Skip to main content

DNA Delivery in Adult Mouse Eyes: An Update with Corneal Outcomes

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1121))

Abstract

Ocular injection (intravitreal, subretinal, or into the anterior space) is an efficient approach to deliver many classes of drugs, cells, and other treatments to various cell types of the eye. In particular, subretinal injection is efficient since delivered agents accumulate as there is no dilution due to transport processes or diffusion and the volume of the interphotoreceptor space (IPS) is minimal (10–20 μl in the human eye, less than 1 μl in the mouse eye). We previously reported methods using subretinal injection and electroporation to deliver DNA to photoreceptor and retinal pigment epithelium cells in retinas of live mice (Johnson et al., 14:2211–2226; Nickerson et al. 884:53–69, 2012; Andrieu-Soler et al. 13:692–706, 2007). Here we detail further optimization of that approach and additionally report its use in delivering DNA expression plasmids to the corneal endothelium.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Testa F, Maguire AM, Rossi S et al (2013) Three-year follow-up after unilateral subretinal delivery of adeno-associated virus in patients with leber congenital amaurosis type 2. Ophthalmology 120:1283–1291

    Article  PubMed  Google Scholar 

  2. Jacobson SG, Cideciyan AV, Ratnakaram R et al (2012) Gene therapy for leber congenital amaurosis caused by rpe65 mutations: safety and efficacy in 15 children and adults followed up to 3 years. Arch Ophthalmol 130:9–24

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Mihelec M, Pearson RA, Robbie SJ et al (2011) Long-term preservation of cones and improvement in visual function following gene therapy in a mouse model of leber congenital amaurosis caused by guanylate cyclase-1 deficiency. Hum Gene Ther 22:1179–1190

    Article  CAS  PubMed  Google Scholar 

  4. Abraham NG, da Silva JL, Lavrovsky Y et al (1995) Adenovirus-mediated heme oxygenase-1 gene transfer into rabbit ocular tissues. Invest Ophthalmol Vis Sci 36:2202–2210

    CAS  PubMed  Google Scholar 

  5. Oshima Y, Sakamoto T, Yamanaka I, Nishi T, Ishibashi T, Inomata H (1998) Targeted gene transfer to corneal endothelium in vivo by electric pulse. Gene Ther 5:1347–1354

    Article  CAS  PubMed  Google Scholar 

  6. Klebe S, Stirling JW, Williams KA (2000) Corneal endothelial cell nuclei are damaged after DNA transfer using a gene gun. Clin Exp Ophthalmol 28:58–59

    Article  CAS  Google Scholar 

  7. Yu WZ, Li XX, She HC et al (2003) Gene transfer of kringle 5 of plasminogen by electroporation inhibits corneal neovascularization. Ophthalmic Res 35:239–246

    Article  CAS  PubMed  Google Scholar 

  8. Liu C, Cheng Q, Nguyen T, Bonanno JA (2010) Knockdown of nbce1 in vivo compromises the corneal endothelial pump. Invest Ophthalmol Vis Sci 51:5190–5197

    Article  PubMed  Google Scholar 

  9. Johnson CJ, Berglin L, Chrenek MA, Redmond TM, Boatright JH, Nickerson JM (2008) Technical brief: subretinal injection and electroporation into adult mouse eyes. Mol Vis 14:2211–2226

    CAS  PubMed  Google Scholar 

  10. Nickerson JM, Goodman P, Chrenek MA et al (2012) Subretinal delivery and electroporation in pigmented and nonpigmented adult mouse eyes. Methods Mol Biol 884:53–69

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Andrieu-Soler C, Halhal M, Boatright JH et al (2007) Single-stranded oligonucleotide-mediated in vivo gene repair in the rd1 retina. Mol Vis 13:692–706

    CAS  PubMed  Google Scholar 

  12. Price J, Turner D, Cepko C (1987) Lineage analysis in the vertebrate nervous system by retrovirus-mediated gene transfer. Proc Natl Acad Sci USA 84:156–160

    Article  CAS  PubMed  Google Scholar 

  13. Gekeler F, Kobuch K, Schwahn HN, Stett A, Shinoda K, Zrenner E (2004) Subretinal electrical stimulation of the rabbit retina with acutely implanted electrode arrays. Graefes Arch Clin Exp Ophthalmol 242:587–596

    Article  PubMed  Google Scholar 

  14. Pfeffer B, Wiggert B, Lee L, Zonnenberg B, Newsome D, Chader G (1983) The presence of a soluble interphotoreceptor retinol-binding protein (irbp) in the retinal interphotoreceptor space. J Cell Physiol 117:333–341

    Article  CAS  PubMed  Google Scholar 

  15. Gerding H (2007) A new approach towards a minimal invasive retina implant. J Neural Eng 4:S30–S37

    Article  CAS  PubMed  Google Scholar 

  16. Timmers AM, Zhang H, Squitieri A, Gonzalez-Pola C (2001) Subretinal injections in rodent eyes: effects on electrophysiology and histology of rat retina. Mol Vis 7:131–137

    CAS  PubMed  Google Scholar 

  17. Dinculescu A, Glushakova L, Min S-H, Hauswirth WW (2005) Adeno-associated virus-vectored gene therapy for retinal disease. Hum Gene Ther 16:649–663

    Article  CAS  PubMed  Google Scholar 

  18. Zheng QA, Chang DC (1991) High-efficiency gene transfection by in situ electroporation of cultured cells. Biochim Biophys Acta 1088:104–110

    Article  CAS  PubMed  Google Scholar 

  19. Neumann E, Schaefer-Ridder M, Wang Y, Hofschneider PH (1982) Gene transfer into mouse lyoma cells by electroporation in high electric fields. EMBO J 1:841–845

    CAS  PubMed  Google Scholar 

  20. Wong TK, Neumann E (1982) Electric field mediated gene transfer. Biochem Biophys Res Commun 107:584–587

    Article  CAS  PubMed  Google Scholar 

  21. Bins AD, van Rheenen J, Jalink K et al (2007) Intravital imaging of fluorescent markers and fret probes by DNA tattooing. BMC Biotechnol 7:2

    Article  PubMed Central  PubMed  Google Scholar 

  22. Bodenstein L, Sidman RL (1987) Growth and development of the mouse retinal pigment epithelium. I. Cell and tissue morphometrics and topography of mitotic activity. Dev Biol 121:192–204

    Article  CAS  PubMed  Google Scholar 

  23. Berglin LC, Schmack I, Holley G et al (2005) Human RPE ex vivo ‘Flatmount technique’ for comparative morphometric and tissue culture survival analysis (mouse) using alizarin red staining, live/dead cell analysis and epifluorescent microscopy. Invest Ophthalmol Vis Sci 46:3064

    Google Scholar 

  24. Berglin, L., Mandell, K., Schmack, I., et al. (2006) Reduction of retinal pigment epithelium (RPE) background autofluorescence with sudan black enhances visualization of fluorescently-labeled proteins in ex vivo rpe flatmounts. ARVO Meeting Abstract

    Google Scholar 

  25. Shaner NC, Campbell RE, Steinbach PA, Giepmans BN, Palmer AE, Tsien RY (2004) Improved monomeric red, orange and yellow fluorescent proteins derived from discosoma sp. red fluorescent protein. Nat Biotechnol 22:1567–1572

    Article  CAS  PubMed  Google Scholar 

  26. Bainbridge JW, Smith AJ, Barker SS et al (2008) Effect of gene therapy on visual function in leber’s congenital amaurosis. N Engl J Med 358:2231–2239

    Article  CAS  PubMed  Google Scholar 

  27. Cideciyan AV, Aleman TS, Boye SL et al (2008) Human gene therapy for rpe65 isomerase deficiency activates the retinoid cycle of vision but with slow rod kinetics. Proc Natl Acad Sci USA 105:15112–15117

    Article  CAS  PubMed  Google Scholar 

  28. Nusinowitz S, Ridder WH 3rd, Pang JJ et al (2006) Cortical visual function in the rd12 mouse model of leber congenital amaurosis (lca) after gene replacement therapy to restore retinal function. Vis Res 46:3926–3934

    Article  CAS  PubMed  Google Scholar 

  29. Hanaki K, Momo A, Oku T et al (2003) Semiconductor quantum dot/albumin complex is a long-life and highly photostable endosome marker. Biochem Biophys Res Commun 302:496–501

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Eye Institute (R01EY016470, R01EY021592, R01EY014026, P30EY006360, R24EY017045, T32EY007092), an unrestricted grant to the Department of Ophthalmology at Emory University from Research to Prevent Blindness, Inc., and the Katz Foundation.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Nickerson, J.M. et al. (2014). DNA Delivery in Adult Mouse Eyes: An Update with Corneal Outcomes. In: Li, S., Cutrera, J., Heller, R., Teissie, J. (eds) Electroporation Protocols. Methods in Molecular Biology, vol 1121. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4614-9632-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-9632-8_15

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4614-9631-1

  • Online ISBN: 978-1-4614-9632-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics