Skip to main content

Direct Imaging of siRNA Electrotransfer at the Single-Cell Level

  • Protocol
  • First Online:
Electroporation Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1121))

Abstract

Short interfering RNAs (siRNAs) represent new potential therapeutic tools owing to their capacity to induce strong, sequence-specific, gene silencing in cells. Electropulsation is one of the physical methods successfully used to transfer siRNA into living cells in vitro and in vivo. Although this approach is proved to be effective for silencing gene expression by RNA interference, very little is known about the basic processes supporting siRNA transfer. In this study, we investigated, by direct visualization at the single-cell level, the electro-delivery of Alexa Fluor 546-labeled siRNA into murine melanoma cells stably expressing the enhanced green fluorescent protein (EGFP) as a target gene. The electrotransfer of siRNA was quantified by time-lapse fluorescence microscopy and was correlated with the silencing of EGFP expression. A direct transfer into the cell cytoplasm of the negatively charged siRNA was observed across the plasma membrane exclusively on the side facing the cathode. The oligonucleotide then freely diffused across the cytosol. Therefore, we show that the electric field pulse acts on both the permeabilization of the cell plasma membrane and on the electrophoretic drag of the negatively charged siRNA molecules from the bulk phase into the cytoplasm. The mechanism involved was clearly specific for the physicochemical properties of the electrotransferred molecule and was different from that observed with the electro-transfer of small molecules or plasmid DNA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded rna in caenorhabditis elegans. Nature 391:806–811

    Article  CAS  PubMed  Google Scholar 

  2. Rana TM (2007) Illuminating the silence: understanding the structure and function of small rnas. Nat Rev Mol Cell Biol 8:23–36

    Article  CAS  PubMed  Google Scholar 

  3. Behlke MA (2006) Progress towards in vivo use of sirnas. Mol Ther 13:644–670

    Article  CAS  PubMed  Google Scholar 

  4. Davis ME, Zuckerman JE, Choi CH et al (2010) Evidence of rnai in humans from systemically administered sirna via targeted nanoparticles. Nature 464:1067–1070

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. DeVincenzo JP (2008) Rna interference strategies as therapy for respiratory viral infections. Pediatr Infect Dis J 27:S118–S122

    Article  PubMed  Google Scholar 

  6. Liu J, Carmell MA, Rivas FV et al (2004) Argonaute2 is the catalytic engine of mammalian rnai. Science 305:1437–1441

    Article  CAS  PubMed  Google Scholar 

  7. Elbashir SM, Lendeckel W, Tuschl T (2001) Rna interference is mediated by 21- and 22-nucleotide rnas. Genes Dev 15:188–200

    Article  CAS  PubMed  Google Scholar 

  8. Zhou J, Rossi JJ (2011) Aptamer-targeted rnai for hiv-1 therapy. Methods Mol Biol 721:355–371

    Article  CAS  PubMed  Google Scholar 

  9. Ledford H (2010) Drug giants turn their backs on rna interference. Nature 468:487

    Article  CAS  PubMed  Google Scholar 

  10. de Fougerolles A, Vornlocher HP, Maraganore J, Lieberman J (2007) Interfering with disease: a progress report on sirna-based therapeutics. Nat Rev Drug Discov 6:443–453

    Article  PubMed  Google Scholar 

  11. Kim DH, Rossi JJ (2007) Strategies for silencing human disease using rna interference. Nat Rev Genet 8:173–184

    Article  CAS  PubMed  Google Scholar 

  12. Mir LM (2009) Nucleic acids electrotransfer-based gene therapy (electrogenetherapy): past, current, and future. Mol Biotechnol 43:167–176

    Article  CAS  PubMed  Google Scholar 

  13. Cemazar M, Sersa G (2007) Electrotransfer of therapeutic molecules into tissues. Curr Opin Mol Ther 9:554–562

    CAS  PubMed  Google Scholar 

  14. Golzio M, Teissie J, Rols MP (2002) Direct visualization at the single-cell level of electrically mediated gene delivery. Proc Natl Acad Sci USA 99:1292–1297

    Article  CAS  PubMed  Google Scholar 

  15. Akaneya Y, Jiang B, Tsumoto T (2005) Rnai-induced gene silencing by local electroporation in targeting brain region. J Neurophysiol 93:594–602

    Article  CAS  PubMed  Google Scholar 

  16. Golzio M, Mazzolini L, Moller P, Rols MP, Teissie J (2005) Inhibition of gene expression in mice muscle by in vivo electrically mediated sirna delivery. Gene Ther 12:246–251

    Article  CAS  PubMed  Google Scholar 

  17. Paganin-Gioanni A, Bellard E, Couderc B, Teissie J, Golzio M (2008) Tracking in vitro and in vivo sirna electrotransfer in tumor cells. J RNAi Gene Silencing 4:281–288

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Valic B, Pavlin M, Miklavcic D (2004) The effect of resting transmembrane voltage on cell electropermeabilization: a numerical analysis. Bioelectrochemistry 63:311–315

    Article  CAS  PubMed  Google Scholar 

  19. Jackson AL, Linsley PS (2010) Recognizing and avoiding sirna off-target effects for target identification and therapeutic application. Nat Rev Drug Discov 9:57–67

    Article  CAS  PubMed  Google Scholar 

  20. Low L, Mander A, McCann K et al (2009) DNA vaccination with electroporation induces increased antibody responses in patients with prostate cancer. Hum Gene Ther 20:1269–1278

    Article  CAS  PubMed  Google Scholar 

  21. Daud AI, DeConti RC, Andrews S et al (2008) Phase i trial of interleukin-12 plasmid electroporation in patients with metastatic melanoma. J Clin Oncol 26:5896–5903

    Article  CAS  PubMed  Google Scholar 

  22. Golzio M, Mazzolini L, Ledoux A et al (2007) In vivo gene silencing in solid tumors by targeted electrically mediated sirna delivery. Gene Ther 14:752–759

    Article  CAS  PubMed  Google Scholar 

  23. Caplen NJ, Parrish S, Imani F, Fire A, Morgan RA (2001) Specific inhibition of gene expression by small double-stranded rnas in invertebrate and vertebrate systems. Proc Natl Acad Sci USA 98:9742–9747

    Article  CAS  PubMed  Google Scholar 

  24. Mazeres S, Sel D, Golzio M et al (2009) Non invasive contact electrodes for in vivo localized cutaneous electropulsation and associated drug and nucleic acid delivery. J Control Release 134:125–131

    Article  CAS  PubMed  Google Scholar 

  25. Birmingham A, Anderson E, Sullivan K et al (2007) A protocol for designing sirnas with high functionality and specificity. Nat Protoc 2:2068–2078

    Article  CAS  PubMed  Google Scholar 

  26. Pei Y, Tuschl T (2006) On the art of identifying effective and specific sirnas. Nat Methods 3:670–676

    Article  CAS  PubMed  Google Scholar 

  27. Rols MP, Teissie J (1998) Electropermeabilization of mammalian cells to macromolecules: control by pulse duration. Biophys J 75:1415–1423

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank laboratory members for their help and comments (Elisabeth Bellard, Aurelie Paganin-Gioanni, Sophie Chabot, Sandrine Pelofy, and Marie-Pierre Rols). Financial supports were obtained from the Seventh Framework European Programme (FP7) OncomiR [grant number 201102], the “Ligue nationale contre le Cancer,” and the “Région Midi-Pyrenées.” This work has been performed in collaboration with the “Toulouse Réseau Imagerie” core IPBS facility (Genotoul, Toulouse, France), which is supported by the Association Recherche Cancer (n°5585), Region Midi Pyrenees (CPER), and Grand Toulouse cluster. This work was conducted in the scope of the LEA-EBAM and the EU-COST Action TD1104.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Teissie, J., Golzio, M. (2014). Direct Imaging of siRNA Electrotransfer at the Single-Cell Level. In: Li, S., Cutrera, J., Heller, R., Teissie, J. (eds) Electroporation Protocols. Methods in Molecular Biology, vol 1121. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4614-9632-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-9632-8_10

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4614-9631-1

  • Online ISBN: 978-1-4614-9632-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics