Skip to main content

Grass Flower Development

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1110))

Abstract

Grasses bear unique flowers lacking obvious petals and sepals in special inflorescence units, the florets and the spikelet. Despite this, grass floral organs such as stamens and lodicules (petal homologs) are specified by ABC homeotic genes encoding MADS domain transcription factors, suggesting that the ABC model of eudicot flower development is largely applicable to grass flowers. However, some modifications need to be made for the model to fit grasses well: for example, a YABBY gene plays an important role in carpel specification. In addition, a number of genes are involved in the development of the lateral organs that constitute the spikelet. In this review, we discuss recent progress in elucidating the genes required for flower and spikelet development in grasses, together with those involved in fate determination of the spikelet and flower meristems.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Kellogg EA (2001) Evolutionary history of the grasses. Plant Physiol 125:1198–1205

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Lohmann JU, Weigel D (2002) Building beauty: the genetic control of floral patterning. Dev Cell 2:135–142

    Article  CAS  PubMed  Google Scholar 

  3. Jack T (2004) Molecular and genetic mechanisms of floral control. Plant Cell 16:S1–S17

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Coen ES, Meyerowitz EM (1991) The war of the whorls: genetic interactions controlling flower development. Nature 353:31–37

    Article  CAS  PubMed  Google Scholar 

  5. Bommert P, Satoh-Nagasawa N, Jackson D, Hirano H-Y (2005) Genetics and evolution of inflorescence and flower development in grasses. Plant Cell Physiol 46:69–78

    Article  CAS  PubMed  Google Scholar 

  6. Bortiri E, Hake S (2007) Flowering and determinacy in maize. J Exp Bot 58:909–916

    Article  CAS  PubMed  Google Scholar 

  7. Thompson BE, Hake S (2008) Translational biology: from Arabidopsis flowers to grass inflorescence architecture. Plant Physiol 149:38–45

    Article  CAS  Google Scholar 

  8. Yoshida H, Nagato Y (2011) Flower development in rice. J Exp Bot 62:4719–4730

    Article  CAS  PubMed  Google Scholar 

  9. Itoh J-I, Nonomura K-I, Ikeda K, Yamaki S, Inukai Y, Yamagishi H, Kitano H, Nagato Y (2005) Rice plant development: from zygote to spikelet. Plant Cell Physiol 46:23–47

    Article  CAS  PubMed  Google Scholar 

  10. Tanaka W, Pautler M, Jackson D, Hirano H-Y (2013) Grass meristems II—inflorescence architecture, flower development and meristem fate. Plant Cell Physiol 54:313–324

    Article  CAS  PubMed  Google Scholar 

  11. Hirano H-Y (2008) Genetic regulation of meristem maintenance and organ specification in rice flower development. In: Hirano H-Y, Hirai A, Sano Y, Sasaki T (eds) Rice biology in the genomics era, vol 62. Springer, Heidelberg, pp 69–79

    Chapter  Google Scholar 

  12. Arber A (1934) The gramineae: a study of cereal, bamboo, and grasses. University Press, Cambridge

    Google Scholar 

  13. Yoshida A, Suzaki T, Tanaka W, Hirano H-Y (2009) The homeotic gene LONG STERILE LEMMA (G1) specifies sterile lemma identity in the rice spikelet. Proc Natl Acad Sci USA 106:20103–20108

    Article  CAS  PubMed  Google Scholar 

  14. Dellaporta SL, Calderon-Urrea A (1994) The sex determination process in maize. Science 266:1501–1505

    Article  CAS  PubMed  Google Scholar 

  15. Irish EE (1996) Regulation of sex determination in maize. Bioessays 18:363–369

    Article  Google Scholar 

  16. McSteen P (2009) Hormonal regulation of branching in grasses. Plant Physiol 149:46–55

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Pautler M, Tanaka W, Hirano H-Y, Jackson D (2013) Grass meristem I—shoot apical meristem maintenance, axillary meristem determinacy, and the floral transition. Plant Cell Physiol 54:302–312

    Article  CAS  PubMed  Google Scholar 

  18. Chuck G, Muszynski M, Kellogg E, Hake S, Schmidt RJ (2002) The control of spikelet meristem identity by the branched silkless1 gene in maize. Science 298:1238–1241

    Article  CAS  PubMed  Google Scholar 

  19. Komatsu M, Chujo A, Nagato Y, Shimamoto K, Kyozuka J (2003) FRIZZY PANICLE is required to prevent the formation of axillary meristems and to establish floral meristem identity in rice spikelets. Development 130:3841–3850

    Article  CAS  PubMed  Google Scholar 

  20. Karim MR, Hirota A, Kwiatkowska D, Tasaka M, Aida M (2009) A role for Arabidopsis PUCHI in floral meristem identity and bract suppression. Plant Cell 21:1360–1372

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Chuck G, Meeley RB, Hake S (1998) The control of maize spikelet meristem fate by the APETALA2-like gene indeterminate spikelet1. Genes Dev 12:1145–1154

    Article  CAS  PubMed  Google Scholar 

  22. Chuck G, Meeley R, Hake S (2008) Floral meristem initiation and meristem cell fate are regulated by the maize AP2 genes ids1 and sid1. Development 135:3013–3019

    Article  CAS  PubMed  Google Scholar 

  23. Lee D-Y, Lee J, Moon S, Park SY, An G (2007) The rice heterochronic gene SUPERNUMERARY BRACT regulates the transition from spikelet meristem to floral meristem. Plant J 49:64–78

    Article  CAS  PubMed  Google Scholar 

  24. Lee DY, An G (2012) Two AP2 family genes, SUPERNUMERARY BRACT (SNB) and OsINDETERMINATE SPIKELET 1 (OsIDS1), synergistically control inflorescence architecture and floral meristem establishment in rice. Plant J 69:445–461

    Article  CAS  PubMed  Google Scholar 

  25. Chuck G, Meeley R, Irish E, Sakai H, Hake S (2007) The maize tasselseed4 microRNA controls sex determination and meristem cell fate by targeting Tasselseed6/indeterminate spikelet1. Nat Genet 39:1517–1521

    Article  CAS  PubMed  Google Scholar 

  26. Zhu QH, Upadhyaya NM, Gubler F, Helliwell CA (2009) Over-expression of miR172 causes loss of spikelet determinacy and floral organ abnormalities in rice (Oryza sativa). BMC Plant Biol 9:149

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  27. Jeon JS, Jang S, Lee S, Nam J, Kim C, Lee SH, Chung YY, Kim SR, Lee YH, Cho YG, An G (2000) leafy hull sterile1 is a homeotic mutation in a rice MADS box gene affecting rice flower development. Plant Cell 12:871–884

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Agrawal GK, Abe K, Yamazaki M, Miyao A, Hirochika H (2005) Conservation of the E-function for floral organ identity in rice revealed by the analysis of tissue culture-induced loss-of-function mutants of the OsMADS1 gene. Plant Mol Biol 59:125–135

    Article  CAS  PubMed  Google Scholar 

  29. Prasad K, Sriram P, Kumar CS, Kushalappa K, Vijayraghavan U (2001) Ectopic expression of rice OsMADS1 reveals a role in specifying the lemma and palea, grass floral organs analogous to sepals. Dev Genes Evol 211:281–290

    Article  CAS  PubMed  Google Scholar 

  30. Prasad K, Parameswaran S, Vijayraghavan U (2005) OsMADS1, a rice MADS-box factor, controls differentiation of specific cell types in the lemma and palea and is an early-acting regulator of inner floral organs. Plant J 43:915–928

    Article  CAS  PubMed  Google Scholar 

  31. Cui R, Han J, Zhao S, Su K, Wu F, Du X, Xu Q, Chong K, Theißen G, Meng Z (2010) Functional conservation and diversification of class E floral homeotic genes in rice (Oryza sativa). Plant J 61:767–781

    Article  CAS  PubMed  Google Scholar 

  32. Ha CM, Jun JH, Fletcher JC (2010) Shoot apical meristem form and function. Curr Top Dev Biol 91:103–140

    CAS  PubMed  Google Scholar 

  33. Aichinger E, Kornet N, Friedrich T, Laux T (2012) Plant stem cell niches. Annu Rev Plant Biol 63:615–636

    Article  CAS  PubMed  Google Scholar 

  34. Bommert P, Lunde C, Nardmann J, Vollbrecht E, Running M, Jackson D, Hake S, Werr W (2005) thick tassel dwarf1 encodes a putative maize ortholog of the ArabidopsisCLAVATA1 leucine-rich repeat receptor-like kinase. Development 132:1235–1245

    Article  CAS  PubMed  Google Scholar 

  35. Taguchi-Shiobara F, Yuan Z, Hake S, Jackson D (2001) The fasciated ear2 gene encodes a leucine-rich repeat receptor-like protein that regulates shoot meristem proliferation in maize. Genes Dev 15:2755–2766

    Article  CAS  PubMed  Google Scholar 

  36. Nagasawa N, Miyoshi M, Kitano H, Satoh H, Nagato Y (1996) Mutations associated with floral organ number in rice. Planta 198:627–633

    Article  CAS  Google Scholar 

  37. Suzaki T, Sato M, Ashikari M, Miyoshi M, Nagato Y, Hirano H-Y (2004) The gene FLORAL ORGAN NUMBER1 regulates floral meristem size in rice and encodes a leucine-rich repeat receptor kinase orthologous to Arabidopsis CLAVATA1. Development 131:5649–5657

    Article  CAS  PubMed  Google Scholar 

  38. Suzaki T, Toriba T, Fujimoto M, Tsutsumi N, Kitano H, Hirano H-Y (2006) Conservation and diversification of meristem maintenance mechanism in Oryza sativa: function of the FLORAL ORGAN NUMBER2 gene. Plant Cell Physiol 47:1591–1602

    Article  CAS  PubMed  Google Scholar 

  39. Chu H, Qian Q, Liang W, Yin C, Tan H, Yao X, Yuan Z, Yang J, Huang H, Luo D, Ma H, Zhang D (2006) The FLORAL ORGAN NUMBER4 gene encoding a putative ortholog of Arabidopsis CLAVATA3 regulates apical meristem size in rice. Plant Physiol 142:1039–1052

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Suzaki T, Ohneda M, Toriba T, Yoshida A, Hirano H-Y (2009) FON2 SPARE1 redundantly regulates floral meristem maintenance with FLORAL ORGAN NUMBER2 in rice. PLoS Genet 5:e1000693

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  41. Suzaki T, Yoshida A, Hirano H-Y (2008) Functional diversification of CLAVATA3-related CLE proteins in meristem maintenance in rice. Plant Cell 20:2049–2058

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Yamaguchi T, Nagasawa N, Kawasaki S, Matsuoka M, Nagato Y, Hirano H-Y (2004) The YABBY gene DROOPING LEAF regulates carpel specification and midrib development in Oryza sativa. Plant Cell 16:500–509

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Nagasawa N, Miyoshi M, Sano Y, Satoh H, Hirano H-Y, Sakai H, Nagato Y (2003) SUPERWOMAN 1 and DROOPING LEAF genes control floral organ identity in rice. Development 130:705–718

    Article  CAS  PubMed  Google Scholar 

  44. Bowman JL, Smyth DR (1999) CRABS CLAW, a gene that regulates carpel and nectary development in Arabidopsis, encodes a novel protein with zinc finger and helix-loop-helix domains. Development 126:2387–2396

    CAS  PubMed  Google Scholar 

  45. Kiesselbach TA (1999) The structure and reproduction of corn—50th anniversary edition. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  46. Ohmori Y, Toriba T, Nakamura H, Ichikawa H, Hirano H-Y (2011) Temporal and spatial regulation of DROOPING LEAF gene expression that promotes midrib formation in rice. Plant J 65:77–86

    Article  CAS  PubMed  Google Scholar 

  47. Ishikawa M, Ohmori Y, Tanaka W, Hirabayashi C, Murai K, Ogihara Y, Yamaguchi T, Hirano H-Y (2009) The spatial expression patterns of DROOPING LEAF orthologs suggest a conserved function in grasses. Genes Genet Syst 84:137–146

    Article  CAS  PubMed  Google Scholar 

  48. Rao SA, Mengesha MH, Reddy CR (1988) Characteristics, inheritance, and allelic relationships of midribless mutants in pearl millet. J Hered 79:18–20

    Google Scholar 

  49. Fladung M, Bossinger G, Roeb GW, Salamini F (1991) Correlated alterations in leaf and flower morphology and rate of leaf photosynthesis in a midribless (mbl) mutant of Panicum maximum Jacq. Planta 184:356–361

    Article  CAS  PubMed  Google Scholar 

  50. Mena M, Ambrose BA, Meeley RB, Briggs SP, Yanofsky MF, Schmidt RJ (1996) Diversification of C-function activity in maize flower development. Science 274:1537–1540

    Article  CAS  PubMed  Google Scholar 

  51. Yamaguchi T, Lee YD, Miyao A, Hirochika H, An G, Hirano H-Y (2006) Functional diversification of the two C-class genes, OSMADS3 and OSMADS58, in Oryza sativa. Plant Cell 18:15–28

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Dreni L, Pilatone A, Yun D, Erreni S, Pajoro A, Caporali E, Zhang D, Kater MM (2011) Functional analysis of all AGAMOUS subfamily members in rice reveals their roles in reproductive organ identity determination and meristem determinacy. Plant Cell 23:2850–2863

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Dreni L, Jacchia S, Fornara F, Fornari M, Ouwerkerk PBF, An G, Colombo L, Kater MM (2007) The D-lineage MADS-box gene OsMADS13 controls ovule identity in rice. Plant J 52:690–699

    Article  CAS  PubMed  Google Scholar 

  54. Yamaki S, Nagato Y, Kurata N, Nonomura K-I (2011) Ovule is a lateral organ finally differentiated from the terminating floral meristem in rice. Dev Biol 351:208–216

    Article  CAS  PubMed  Google Scholar 

  55. Kurakawa T, Ueda N, Maekawa M, Kobayashi K, Kojima M, Nagato Y, Sakakibara H, Kyozuka J (2007) Direct control of shoot meristem activity by a cytokinin-activating enzyme. Nature 445:652–655

    Article  CAS  PubMed  Google Scholar 

  56. Ambrose BA, Lerner DR, Ciceri P, Padilla CM, Yanofsky MF, Schmidt RJ (2000) Molecular and genetic analyses of the silky1 gene reveal conservation in floral organ specification between eudicots and monocots. Mol Cell 5:569–579

    Article  CAS  PubMed  Google Scholar 

  57. Yao S-G, Ohmori S, Kimizu M, Yoshida H (2008) Unequal genetic redundancy of rice PISTILLATA orthologs, OsMADS2 and OsMADS4, in lodicule and stamen development. Plant Cell Physiol 49:853–857

    Article  CAS  PubMed  Google Scholar 

  58. Kyozuka J, Kobayashi T, Morita M, Shimamoto K (2000) Spatially and temporally regulated expression of rice MADS box genes with similarity to Arabidopsis Class A, B and C Genes. Plant Cell Physiol 41:710–718

    Article  CAS  PubMed  Google Scholar 

  59. Yadav SR, Prasad K, Vijayraghavan U (2007) Divergent regulatory OsMADS2 functions control size, shape and differentiation of the highly derived rice floret second-whorl organ. Genetics 176:283–294

    Article  CAS  PubMed  Google Scholar 

  60. Yoshida H, Itoh J-I, Ohmori S, Miyoshi K, Horigome A, Uchida E, Kimizu M, Matsumura Y, Kusaba M, Satoh H, Nagato Y (2007) superwoman1-cleistogamy, a hopeful allele for gene containment in GM rice. Plant Biotechnol J 5:835–846

    Article  CAS  PubMed  Google Scholar 

  61. Whipple CJ, Ciceri P, Padilla CM, Ambrose BA, Bandong SL, Schmidt RJ (2004) Conservation of B-class floral homeotic gene function between maize and Arabidopsis. Development 131:6083–6091

    Article  CAS  PubMed  Google Scholar 

  62. Kyozuka J, Shimamoto K (2002) Ectopic expression of OsMADS3, a rice ortholog of AGAMOUS, caused a homeotic transformation of lodicules to stamens in transgenic rice plants. Plant Cell Physiol 43:130–135

    Article  CAS  PubMed  Google Scholar 

  63. Toriba T, Suzaki T, Yamaguchi T, Ohmori Y, Tsukaya H, Hirano H-Y (2010) Distinct regulation of adaxial-abaxial polarity in anther patterning in rice. Plant Cell 22:1452–1462

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Yoshida H (2012) Is the lodicule a petal: molecular evidence? Plant Sci 184:121–128

    Article  CAS  PubMed  Google Scholar 

  65. Nair SK, Wang N, Turuspekov Y, Pourkheirandish M, Sinsuwongwat S, Chen G, Sameri M, Tagiri A, Honda I, Watanabe Y, Kanamori H, Wicker T, Stein N, Nagamura Y, Matsumoto T, Komatsuda T (2010) Cleistogamous flowering in barley arises from the suppression of microRNA-guided HvAP2 mRNA cleavage. Proc Natl Acad Sci USA 107:490–495

    Article  CAS  PubMed  Google Scholar 

  66. Bomblies K, Wang R-L, Ambrose BA, Schmidt RJ, Meeley RB, Doebley J (2003) Duplicate FLORICAULA/LEAFY homologs zfl1 and zfl2 control inflorescence architecture and flower patterning in maize. Development 130:2385–2395

    Article  CAS  PubMed  Google Scholar 

  67. Rao NN, Prasad K, Kumar PR, Vijayraghavan U (2008) Distinct regulatory role for RFL, the rice LFY homolog, in determining flowering time and plant architecture. Proc Natl Acad Sci USA 105:3646–3651

    Article  CAS  PubMed  Google Scholar 

  68. Ikeda-Kawakatsu K, Maekawa M, Izawa T, Itoh J-I, Nagato Y (2012) ABERRANT PANICLE ORGANIZATION 2/RFL, the rice ortholog of Arabidopsis LEAFY, suppresses the transition from inflorescence meristem to floral meristem through interaction with APO1. Plant J 69:168–180

    Article  CAS  PubMed  Google Scholar 

  69. Ikeda K, Ito M, Nagasawa N, Kyozuka J, Nagato Y (2007) Rice ABERRANT PANICLE ORGANIZATION 1, encoding an F-box protein, regulates meristem fate. Plant J 51:1030–1040

    Article  CAS  PubMed  Google Scholar 

  70. Ikeda K, Nagasawa N, Nagato Y (2005) Aberrant panicle organization 1 temporally regulates meristem identity in rice. Dev Biol 282:349–360

    Article  CAS  PubMed  Google Scholar 

  71. Ikeda-Kawakatsu K, Yasuno N, Oikawa T, Iida S, Nagato Y, Maekawa M, Kyozuka J (2009) Expression level of ABERRANT PANICLE ORGANIZATION1 determines rice inflorescence form through control of cell proliferation in the meristem. Plant Physiol 150:736–747

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Ookawa T, Hobo T, Yano M, Murata K, Ando T, Miura H, Asano K, Ochiai Y, Ikeda M, Nishitani R, Ebitani T, Ozaki H, Angeles ER, Hirasawa T, Matsuoka M (2010) New approach for rice improvement using a pleiotropic QTL gene for lodging resistance and yield. Nat Commun 1:132

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  73. Horigome A, Nagasawa N, Ikeda K, Ito M, Itoh J-I, Nagato Y (2009) Rice OPEN BEAK is a negative regulator of class 1 knox genes and a positive regulator of class B floral homeotic gene. Plant J 58:724–736

    Article  CAS  PubMed  Google Scholar 

  74. Xiao H, Tang J, Li Y, Wang W, Li X, Jin L, Xie R, Luo H, Zhao X, Meng Z, He G, Zhu L (2009) STAMENLESS 1, encoding a single C2H2 zinc finger protein, regulates floral organ identity in rice. Plant J 59:789–801

    Article  CAS  PubMed  Google Scholar 

  75. Dinneny JR, Yadegari R, Fischer RL, Yanofsky MF, Weigel D (2004) The role of JAGGED in shaping lateral organs. Development 131:1101–1110

    Article  CAS  PubMed  Google Scholar 

  76. Ohno CK, Reddy GV, Heisler MGB, Meyerowitz EM (2004) The Arabidopsis JAGGED gene encodes a zinc finger protein that promotes leaf tissue development. Development 131:1111–1122

    Article  CAS  PubMed  Google Scholar 

  77. Dinneny JR, Weigel D, Yanofsky MF (2006) NUBBIN and JAGGED define stamen and carpel shape in Arabidopsis. Development 133:1645–1655

    Article  CAS  PubMed  Google Scholar 

  78. Lee S, Jeon J-S, An K, Moon Y-H, Lee S, Chung Y-Y, An G (2003) Alteration of floral organ identity in rice through ectopic expression of OsMADS16. Planta 217:904–911

    Article  CAS  PubMed  Google Scholar 

  79. Hama E, Takumi S, Ogihara Y, Murai K (2004) Pistillody is caused by alterations to the class-B MADS-box gene expression pattern in alloplasmic wheats. Planta 218:712–720

    Article  CAS  PubMed  Google Scholar 

  80. Li H, Liang W, Yin C, Zhu L, Zhang D (2011) Genetic interaction of OsMADS3, DROOPING LEAF, and OsMADS13 in specifying rice floral organ identities and meristem determinacy. Plant Physiol 156:263–274

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  81. Ohmori S, Kimizu M, Sugita M, Miyao A, Hirochika H, Uchida E, Nagato Y, Yoshida H (2009) MOSAIC FLORAL ORGANS1, an AGL6-like MADS box gene, regulates floral organ identity and meristem fate in rice. Plant Cell 21:3008–3025

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  82. Li H, Liang W, Hu Y, Zhu L, Yin C, Xu J, Dreni L, Kater MM, Zhang D (2011) Rice MADS6 interacts with the floral homeotic genes SUPERWOMAN1, MADS3, MADS58, MADS13, and DROOPING LEAF in specifying floral organ identities and meristem fate. Plant Cell 23:2536–2552

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  83. Thompson BE, Bartling L, Whipple C, Hall DH, Sakai H, Schmidt R, Hake S (2009) bearded-ear encodes a MADS box transcription factor critical for maize floral development. Plant Cell 21:2578–2590

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  84. Li H, Liang W, Jia R, Yin C, Zong J, Kong H, Zhang D (2010) The AGL6-like gene OsMADS6 regulates floral organ and meristem identities in rice. Cell Res 20:299–313

    Article  CAS  PubMed  Google Scholar 

  85. Reinheimer R, Kellogg EA (2009) Evolution of AGL6-like MADS box genes in grasses (Poaceae): ovule expression is ancient and palea expression is new. Plant Cell 21:2591–2605

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  86. Sun B, Xu Y, Ng K-H, Ito T (2009) A timing mechanism for stem cell maintenance and differentiation in the Arabidopsis floral meristem. Genes Dev 23:1791–1804

    Article  CAS  PubMed  Google Scholar 

  87. Clifford HT (1987) Spikelet and floral morphology. In: Soderstrom TR, Hilu KW, Campbell CS, Barkworth ME (eds) Grass systematics and evolution. Smithsonian Institution Press, Washington, DC, pp 21–30

    Google Scholar 

  88. Kobayashi K, Yasuno N, Sato Y, Yoda M, Yamazaki R, Kimizu M, Yoshida H, Nagamura Y, Kyozuka J (2012) Inflorescence meristem identity in rice is specified by overlapping functions of three AP1/FUL-Like MADS box genes and PAP2, a SEPALLATA MADS box gene. Plant Cell 24:1848–1859

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  89. Cacharron J, Saedler H, Theissen G (1999) Expression of MADS box genes ZMM8 and ZMM14 during inflorescence development of Zea mays discriminates between the upper and the lower floret of each spikelet. Dev Genes Evol 209:411–420

    Article  CAS  Google Scholar 

  90. Malcomber ST, Kellogg EA (2004) Heterogeneous expression patterns and separate roles of the SEPALLATA gene LEAFY HULL STERILE1 in grasses. Plant Cell 16:1692–1706

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  91. Tanaka W, Toriba T, Ohmori Y, Yoshida A, Kawai A, Mayama-Tsuchida T, Ichikawa H, Mitsuda N, Ohme-Takagi M, Hirano H-Y (2012) The YABBY gene TONGARI-BOUSHI1 is involved in lateral organ development and maintenance of meristem organization in the rice spikelet. Plant Cell 24:80–95

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  92. Tanaka W, Toriba T, Ohomori Y, Hirano H-Y (2012) Formation of two florets within a single spikelet in the rice tongari-boushi1 mutant. Plant Signal Behav 7:793–795

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  93. Siegfried KR, Eshed Y, Baum SF, Otsuga D, Drews GN, Bowman JL (1999) Members of the YABBY gene family specify abaxial cell fate in Arabidopsis. Development 126:4117–4128

    CAS  PubMed  Google Scholar 

  94. Goldshmidt A, Alvarez JP, Bowman JL, Eshed Y (2008) Signals derived from YABBY gene activities in organ primordia regulate growth and partitioning of Arabidopsis shoot apical meristems. Plant Cell 20:1217–1230

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  95. Yuan Z, Gao S, Xue D-W, Luo D, Li L-T, Ding S-Y, Yao X, Wilson ZA, Qian Q, Zhang D-B (2009) RETARDED PALEA1 controls palea development and floral zygomorphy in rice. Plant Physiol 149:235–244

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  96. Jin Y, Luo Q, Tong H, Wang A, Cheng Z, Tang J, Li D, Zhao X, Li X, Wan J, Jiao Y, Chu C, Zhu L (2011) An AT-hook gene is required for palea formation and floral organ number control in rice. Dev Biol 359:277–288

    Article  CAS  PubMed  Google Scholar 

  97. Itoh J-I, Kitano H, Matsuoka M, Nagato Y (2000) SHOOT ORGANIZATION genes regulate shoot apical meristem organization and the pattern of leaf primordium initiation in rice. Plant Cell 12:2161–2174

    CAS  PubMed Central  PubMed  Google Scholar 

  98. Liu B, Chen Z, Song X, Liu C, Cui X, Zhao X, Fang J, Xu W, Zhang H, Wang X, Chu C, Deng X, Xue Y, Cao X (2007) Oryza sativa dicer-like4 reveals a key role for small interfering RNA silencing in plant development. Plant Cell 19:2705–2718

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  99. Abe M, Yoshikawa T, Nosaka M, Sakakibara H, Sato Y, Nagato Y, Itoh J-I (2010) WAVY LEAF1, an ortholog of Arabidopsis HEN1, regulates shoot development by maintaining microRNA and trans-acting small interfering RNA accumulation in rice. Plant Physiol 154:1335–1346

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  100. Li A, Zhang Y, Wu X, Tang W, Wu R, Dai Z, Liu G, Zhang H, Wu C, Chen G, Pan X (2008) DH1, a LOB domain-like protein required for glume formation in rice. Plant Mol Biol 66:491–502

    Article  CAS  PubMed  Google Scholar 

  101. Li X, Sun L, Tan L, Liu F, Zhu Z, Fu Y, Sun X, Sun X, Xie D, Sun C (2012) TH1, a DUF640 domain-like gene controls lemma and palea development in rice. Plant Mol Biol 78:351–359

    Article  CAS  PubMed  Google Scholar 

  102. Becraft PW, Stinard PS, McCarty DR (1996) CRINKLY4: A TNFR-like receptor kinase involved in maize epidermal differentiation. Science 273:1406–1409

    Article  CAS  PubMed  Google Scholar 

  103. Pu C-X, Ma Y, Wang J, Zhang Y-C, Jiao X-W, Hu Y-H, Wang L-L, Zhu Z-G, Sun D, Sun Y (2012) Crinkly4 receptor-like kinase is required to maintain the interlocking of the palea and lemma, and fertility in rice, by promoting epidermal cell differentiation. Plant J 70:940–953

    Article  CAS  PubMed  Google Scholar 

  104. Li H, Xue D, Gao Z, Yan M, Xu W, Xing Z, Huang D, Qian Q, Xue Y (2009) A putative lipase gene EXTRA GLUME1 regulates both empty-glume fate and spikelet development in rice. Plant J 57:593–605

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  105. Yoshida A, Ohmori Y, Kitano H, Taguchi-Shiobara F, Hirano H-Y (2012) ABERRANT SPIKELET AND PANICLE1, encoding a TOPLESS-related transcriptional co-repressor, is involved in the regulation of meristem fate in rice. Plant J 70:327–339

    Article  CAS  PubMed  Google Scholar 

  106. Kobayashi K, Maekawa M, Miyao A, Hirochika H, Kyozuka J (2010) PANICLE PHYTOMER2 (PAP2), encoding a SEPALLATA subfamily MADS-box protein, positively controls spikelet meristem identity in rice. Plant Cell Physiol 51:47–57

    Article  CAS  PubMed  Google Scholar 

  107. Gao X, Liang W, Yin C, Ji S, Wang H, Su X, Guo C, Kong H, Xue H, Zhang D (2010) The SEPALLATA-like gene OsMADS34 is required for rice inflorescence and spikelet development. Plant Physiol 153:728–740

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  108. Long JA, Ohno C, Smith ZR, Meyerowitz EM (2006) TOPLESS regulates apical embryonic fate in Arabidopsis. Science 312:1520–1523

    Article  CAS  PubMed  Google Scholar 

  109. Wang H, Nussbaum-Wagler T, Li B, Zhao Q, Vigouroux Y, Faller M, Bomblies K, Lukens L, Doebley JF (2005) The origin of the naked grains of maize. Nature 436:714–719

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  110. DeLong A, Calderon-Urrea A, Dellaporta SL (1993) Sex determination gene TASSELSEED2 of maize encodes a short-chain alcohol dehydrogenase required for stage-specific floral organ abortion. Cell 74:757–768

    Article  CAS  PubMed  Google Scholar 

  111. Acosta IF, Laparra H, Romero SP, Schmelz E, Hamberg M, Mottinger JP, Moreno MA, Dellaporta SL (2009) tasselseed1 is a lipoxygenase affecting jasmonic acid signaling in sex determination of maize. Science 323:262–265

    Article  CAS  PubMed  Google Scholar 

  112. Hartwig T, Chuck GS, Fujioka S, Klempien A, Weizbauer R, Potluri DP, Choe S, Johal GS, Schulz B (2011) Brassinosteroid control of sex determination in maize. Proc Natl Acad Sci USA 108:19814–19819

    Article  CAS  PubMed  Google Scholar 

  113. Bensen RJ, Johal GS, Crane VC, Tossberg JT, Schnable PS, Meeley RB, Briggs SP (1995) Cloning and characterization of the maize An1 gene. Plant Cell 7:75–84

    CAS  PubMed Central  PubMed  Google Scholar 

  114. Peng J, Richards DE, Hartley NM, Murphy GP, Devos KM, Flintham JE, Beales J, Fish LJ, Worland AJ, Pelica F, Sudhakar D, Christou P, Snape JW, Gale MD, Harberd NP (1999) ‘Green revolution’ genes encode mutant gibberellin response modulators. Nature 400:256–261

    Article  CAS  PubMed  Google Scholar 

  115. Veit B, Briggs SP, Schmidt RJ, Yanofsky MF, Hake S (1998) Regulation of leaf initiation by the terminal ear 1 gene of maize. Nature 393:166–168

    Article  CAS  PubMed  Google Scholar 

  116. Han JJ, Jackson D, Martienssen R (2012) Pod corn is caused by rearrangement at the Tunicate1 locus. Plant Cell 24:2733–2744

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  117. Yun D, Liang W, Dreni L, Yin C, Zhou Z, Kater M, Zhang D (2013) OsMADS16 interacts with OsMADS3 and OsMADS58 in specifying floral patterning in rice. Mol Plant 6(3):743–756

    Article  CAS  PubMed  Google Scholar 

  118. Ohmori Y, Tanaka W, Kojima M, Sakakibara H, Hirano, H-Y (2013) WUSCHEL-RELATED HOMEOBOX4 is involved in meristem maintenance and is negatively regulated by the CLE gene FCP1 in rice. Plant Cell 25:229–241

    Google Scholar 

Download references

Acknowledgement

We thank Dr. H. Yoshida for critical reading of the manuscript. W. T. is supported by a Research Fellowship for Young Scientists from the Japan Society for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiro-Yuki Hirano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Hirano, HY., Tanaka, W., Toriba, T. (2014). Grass Flower Development. In: Riechmann, J., Wellmer, F. (eds) Flower Development. Methods in Molecular Biology, vol 1110. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4614-9408-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-9408-9_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4614-9407-2

  • Online ISBN: 978-1-4614-9408-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics