Skip to main content

Nrf2-Target Approaches in Cancer Chemoprevention Mediated by Dietary Phytochemicals

  • Protocol
  • First Online:
Book cover Cancer Prevention

Abstract

Cancer chemoprevention with natural phytochemical compounds is an emerging strategy to prevent, impede, delay, or cure cancer. This chapter reviews the basic methods used to study the cancer chemopreventive potential of dietary phytochemicals acting by activating the transcriptional factor, nuclear factor-erythroid 2-related factor 2 (Nrf2 or NFE2L2), a basic-region leucine zipper (bZIP) transcription factor that regulates the expression of many phase II detoxifying/antioxidant enzymes. The Nrf2-target approaches in cancer chemoprevention comprise different methods including examining the Nrf2 signaling pathway, Nrf2-deficient tumor mouse models, pharmacokinetics (PK)/pharmacodynamics (PD) assessment, and epigenetic regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wattenberg LW (1985) Chemoprevention of cancer. Cancer Res 45(1):1–8

    PubMed  CAS  Google Scholar 

  2. Su ZY, Shu L, Khor TO, Lee JH, Fuentes F, Kong AN (2013) A perspective on dietary phytochemicals and cancer chemoprevention: oxidative stress, Nrf2, and epigenomics. Top Curr Chem 329:133–162. doi:10.1007/128_2012_340

    Google Scholar 

  3. Chen C, Pung D, Leong V, Hebbar V, Shen G, Nair S, Li W, Kong AN (2004) Induction of detoxifying enzymes by garlic organosulfur compounds through transcription factor Nrf2: effect of chemical structure and stress signals. Free Radic Biol Med 37(10):1578–1590. doi:10.1016/j.freeradbiomed.2004.07.021, pii:S0891-5849(04)00580-5

    Article  PubMed  CAS  Google Scholar 

  4. Yu S, Kong AN (2007) Targeting carcinogen metabolism by dietary cancer preventive compounds. Curr Cancer Drug Targets 7(5):416–424

    Article  PubMed  CAS  Google Scholar 

  5. He CH, Gong P, Hu B, Stewart D, Choi ME, Choi AM, Alam J (2001) Identification of activating transcription factor 4 (ATF4) as an Nrf2-interacting protein. Implication for heme oxygenase-1 gene regulation. J Biol Chem 276(24):20858–20865. doi:10.1074/jbc.M10 1198200M101198200

    Google Scholar 

  6. Jaiswal AK (2004) Nrf2 signaling in coordinated activation of antioxidant gene expression. Free Radic Biol Med 36(10):1199–1207. doi:10.1016/j.freeradbiomed, pii: 2004.02.074S0891584904001923

    Article  PubMed  CAS  Google Scholar 

  7. Levy S, Forman HJ (2010) C-Myc is a Nrf2-interacting protein that negatively regulates phase II genes through their electrophile responsive elements. IUBMB Life 62(3):237–246. doi:10.1002/iub.314

    Article  PubMed  CAS  Google Scholar 

  8. Alam J, Stewart D, Touchard C, Boinapally S, Choi AM, Cook JL (1999) Nrf2, a Cap'n'Collar transcription factor, regulates induction of the heme oxygenase-1 gene. J Biol Chem 274(37):26071–26078

    Article  PubMed  CAS  Google Scholar 

  9. Ishii T, Itoh K, Takahashi S, Sato H, Yanagawa T, Katoh Y, Bannai S, Yamamoto M (2000) Transcription factor Nrf2 coordinately regulates a group of oxidative stress-inducible genes in macrophages. J Biol Chem 275(21):16023–16029. doi:275/21/16023

    Article  PubMed  CAS  Google Scholar 

  10. Wu TY, Saw CL, Khor TO, Pung D, Boyanapalli SS, Kong AN (2012) In vivo pharmacodynamics of indole-3-carbinol in the inhibition of prostate cancer in transgenic adenocarcinoma of mouse prostate (TRAMP) mice: involvement of Nrf2 and cell cycle/apoptosis signaling pathways. Mol Carcinog 51(10):761–770. doi:10.1002/mc.20841

    Google Scholar 

  11. Sun Z, Wu T, Zhao F, Lau A, Birch CM, Zhang DD (2011) KPNA6 (Importin {alpha}7)-mediated nuclear import of Keap1 represses the Nrf2-dependent antioxidant response. Mol Cell Biol 31(9):1800–1811. doi:10.1128/MCB.05036-11, MCB.05036-11

    Article  PubMed  CAS  Google Scholar 

  12. Lee JH, Khor TO, Shu L, Su ZY, Fuentes F, Kong AN (2013) Dietary phytochemicals and cancer prevention: Nrf2 signaling, epigenetics, and cell death mechanisms in blocking cancer initiation and progression. Pharmacol Ther 137(2):153–171. doi:10.1016/j.pharmthera.2012.09.008

    Article  PubMed  CAS  Google Scholar 

  13. Khor TO, Huang Y, Wu TY, Shu L, Lee J, Kong AN (2011) Pharmacodynamics of curcumin as DNA hypomethylation agent in restoring the expression of Nrf2 via promoter CpGs demethylation. Biochem Pharmacol 82(9):1073–1078. doi:10.1016/j.bcp.2011.07.065

    Google Scholar 

  14. Xu C, Huang MT, Shen G, Yuan X, Lin W, Khor TO, Conney AH, Kong AN (2006) Inhibition of 7,12-dimethylbenz(a)anthracene-induced skin tumorigenesis in C57BL/6 mice by sulforaphane is mediated by nuclear factor E2-related factor 2. Cancer Res 66(16):8293–8296. doi:10.1158/0008-5472.CAN-06-0300

    Article  PubMed  CAS  Google Scholar 

  15. Zhang C, Su ZY, Khor TO, Shu L, Kong AN (2013) Sulforaphane enhances Nrf2 expression in prostate cancer TRAMP C1 cells through epigenetic regulation. Biochem Pharmacol 85(9):1398–1404. doi: 10.1016/j.bcp.2013.02.010

    Google Scholar 

  16. Shen G, Xu C, Hu R, Jain MR, Nair S, Lin W, Yang CS, Chan JY, Kong AN (2005) Comparison of (−)-epigallocatechin-3-gallate elicited liver and small intestine gene expression profiles between C57BL/6J mice and C57BL/6J/Nrf2 (−/−) mice. Pharm Res 22(11):1805–1820. doi:10.1007/s11095-005-7546-8

    Article  PubMed  CAS  Google Scholar 

  17. Kang HJ, Hong YB, Kim HJ, Wang A, Bae I (2011) Bioactive food components prevent carcinogenic stress via Nrf2 activation in BRCA1 deficient breast epithelial cells. Toxicol Lett 209(2):154–160. doi:10.1016/j.toxlet.2011.12.002, pii: S0378-4274(11)01653-5

    Article  PubMed  Google Scholar 

  18. Barve A, Khor TO, Nair S, Reuhl K, Suh N, Reddy B, Newmark H, Kong AN (2009) Gamma-tocopherol-enriched mixed tocopherol diet inhibits prostate carcinogenesis in TRAMP mice. Int J Cancer 124(7):1693–1699. doi:10.1002/ijc.24106

    Article  PubMed  CAS  Google Scholar 

  19. Yu S, Khor TO, Cheung KL, Li W, Wu TY, Huang Y, Foster BA, Kan YW, Kong AN (2010) Nrf2 expression is regulated by epigenetic mechanisms in prostate cancer of TRAMP mice. PLoS One 5(1):e8579. doi:10.1371/journal.pone.0008579

  20. Cho HY, Reddy SP, Debiase A, Yamamoto M, Kleeberger SR (2005) Gene expression profiling of NRF2-mediated protection against oxidative injury. Free Radic Biol Med 38(3):325–343. doi:10.1016/j.freeradbiomed.2004.10.013, pii: S0891-5849(04)00835-4

    Article  PubMed  CAS  Google Scholar 

  21. Kwak MK, Wakabayashi N, Itoh K, Motohashi H, Yamamoto M, Kensler TW (2003) Modulation of gene expression by cancer chemopreventive dithiolethiones through the Keap1-Nrf2 pathway. Identification of novel gene clusters for cell survival. J Biol Chem 278(10):8135–8145. doi:10.1074/jbc.M211898200M211898200

    Article  PubMed  CAS  Google Scholar 

  22. Lee JM, Calkins MJ, Chan K, Kan YW, Johnson JA (2003) Identification of the NF-E2-related factor-2-dependent genes conferring protection against oxidative stress in primary cortical astrocytes using oligonucleotide microarray analysis. J Biol Chem 278(14):12029–12038. doi:10.1074/jbc.M211558200M211558200

    Article  PubMed  CAS  Google Scholar 

  23. Rangasamy T, Cho CY, Thimmulappa RK, Zhen L, Srisuma SS, Kensler TW, Yamamoto M, Petrache I, Tuder RM, Biswal S (2004) Genetic ablation of Nrf2 enhances susceptibility to cigarette smoke-induced emphysema in mice. J Clin Invest 114(9):1248–1259. doi:10.1172/JCI21146

    PubMed  CAS  Google Scholar 

  24. Thimmulappa RK, Mai KH, Srisuma S, Kensler TW, Yamamoto M, Biswal S (2002) Identification of Nrf2-regulated genes induced by the chemopreventive agent sulforaphane by oligonucleotide microarray. Cancer Res 62(18):5196–5203

    PubMed  CAS  Google Scholar 

  25. Rushmore TH, Morton MR, Pickett CB (1991) The antioxidant responsive element. Activation by oxidative stress and identification of the DNA consensus sequence required for functional activity. J Biol Chem 266(18):11632–11639

    PubMed  CAS  Google Scholar 

  26. Villeneuve NF, Lau A, Zhang DD (2010) Regulation of the Nrf2-Keap1 antioxidant response by the ubiquitin proteasome system: an insight into cullin-ring ubiquitin ligases. Antioxidants Redox Signal 13(11):1699–1712. doi:10.1089/ars.2010. 3211

    Article  CAS  Google Scholar 

  27. Hayes JD, McMahon M, Chowdhry S, Dinkova-Kostova AT (2010) Cancer chemoprevention mechanisms mediated through the Keap1-Nrf2 pathway. Antioxidants Redox Signal 13(11):1713–1748. doi:10.1089/ars.2010.3221

    Article  CAS  Google Scholar 

  28. Yu R, Mandlekar S, Lei W, Fahl WE, Tan TH, Kong AN (2000) p38 mitogen-activated protein kinase negatively regulates the induction of phase II drug-metabolizing enzymes that detoxify carcinogens. J Biol Chem 275(4):2322–2327

    Article  PubMed  CAS  Google Scholar 

  29. Saw CL, Cintron M, Wu TY, Guo Y, Huang Y, Jeong WS, Kong AN (2011) Pharmacodynamics of dietary phytochemical indoles I3C and DIM: Induction of Nrf2-mediated phase II drug metabolizing and antioxidant genes and synergism with isothiocyanates. Biopharm Drug Dispos 32(5):289–300. doi:10.1002/bdd.759

    Article  PubMed  CAS  Google Scholar 

  30. Chen C, Yu R, Owuor ED, Kong AN (2000) Activation of antioxidant-response element (ARE), mitogen-activated protein kinases (MAPKs) and caspases by major green tea polyphenol components during cell survival and death. Arch Pharm Res 23(6):605–612

    Article  PubMed  CAS  Google Scholar 

  31. Wu TY, Khor TO, Saw CL, Loh SC, Chen AI, Lim SS, Park JH, Cai L, Kong AN (2011) Anti-inflammatory/anti-oxidative stress activities and differential regulation of Nrf2-mediated genes by non-polar fractions of tea Chrysanthemum zawadskii and licorice Glycyrrhiza uralensis. AAPS J 13(1):1–13. doi:10.1208/s12248-010-9239-4

    Article  PubMed  Google Scholar 

  32. Prawan A, Keum YS, Khor TO, Yu S, Nair S, Li W, Hu L, Kong AN (2008) Structural influence of isothiocyanates on the antioxidant response element (ARE)-mediated heme oxygenase-1 (HO-1) expression. Pharm Res 25(4):836–844. doi:10.1007/s11095-007-9370-9

    Article  PubMed  CAS  Google Scholar 

  33. Jeong WS, Keum YS, Chen C, Jain MR, Shen G, Kim JH, Li W, Kong AN (2005) Differential expression and stability of endogenous nuclear factor E2-related factor 2 (Nrf2) by natural chemopreventive compounds in HepG2 human hepatoma cells. J Biochem Mol Biol 38(2):167–176

    Article  PubMed  CAS  Google Scholar 

  34. Kim BR, Hu R, Keum YS, Hebbar V, Shen G, Nair SS, Kong AN (2003) Effects of glutathione on antioxidant response element-mediated gene expression and apoptosis elicited by sulforaphane. Cancer Res 63(21):7520–7525

    PubMed  CAS  Google Scholar 

  35. Yuan X, Xu C, Pan Z, Keum YS, Kim JH, Shen G, Yu S, Oo KT, Ma J, Kong AN (2006) Butylated hydroxyanisole regulates ARE-mediated gene expression via Nrf2 coupled with ERK and JNK signaling pathway in HepG2 cells. Mol Carcinog 45(11):841–850. doi:10.1002/mc.20234

    Article  PubMed  CAS  Google Scholar 

  36. Saw CL, Huang Y, Kong AN (2010) Synergistic anti-inflammatory effects of low doses of curcumin in combination with polyunsaturated fatty acids: docosahexaenoic acid or eicosapentaenoic acid. Biochem Pharmacol 79(3):421–430. doi:10.1016/j.bcp.2009.08.030

    Article  PubMed  CAS  Google Scholar 

  37. Chan K, Lu R, Chang JC, Kan YW (1996) NRF2, a member of the NFE2 family of transcription factors, is not essential for murine erythropoiesis, growth, and development. Proc Natl Acad Sci U S A 93(24):13943–13948

    Article  PubMed  CAS  Google Scholar 

  38. Yoh K, Itoh K, Enomoto A, Hirayama A, Yamaguchi N, Kobayashi M, Morito N, Koyama A, Yamamoto M, Takahashi S (2001) Nrf2-deficient female mice develop lupus-like autoimmune nephritis. Kidney Int 60(4):1343–1353. doi:10.1046/j.1523-1755.2001.00939.x, pii: kid939

    Article  PubMed  CAS  Google Scholar 

  39. Chanas SA, Jiang Q, McMahon M, McWalter GK, McLellan LI, Elcombe CR, Henderson CJ, Wolf CR, Moffat GJ, Itoh K, Yamamoto M, Hayes JD (2002) Loss of the Nrf2 transcription factor causes a marked reduction in constitutive and inducible expression of the glutathione S-transferase Gsta1, Gsta2, Gstm1, Gstm2, Gstm3 and Gstm4 genes in the livers of male and female mice. Biochem J 365(Pt 2):405–416. doi:10.1042/BJ20020320BJ20020320

    Article  PubMed  CAS  Google Scholar 

  40. Cho HY, Jedlicka AE, Reddy SP, Kensler TW, Yamamoto M, Zhang LY, Kleeberger SR (2002) Role of NRF2 in protection against hyperoxic lung injury in mice. Am J Respir Cell Mol Biol 26(2):175–182

    Article  PubMed  CAS  Google Scholar 

  41. Bauer AK, Cho HY, Miller-Degraff L, Walker C, Helms K, Fostel J, Yamamoto M, Kleeberger SR (2011) Targeted deletion of Nrf2 reduces urethane-induced lung tumor development in mice. PLoS One 6(10):e26590. doi:10.1371/journal.pone.0026590PONE-D-11-06632

    Article  PubMed  CAS  Google Scholar 

  42. Itoh K, Chiba T, Takahashi S, Ishii T, Igarashi K, Katoh Y, Oyake T, Hayashi N, Satoh K, Hatayama I, Yamamoto M, Nabeshima Y (1997) An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem Biophys Res Commun 236(2):313–322, S0006291X97969436

    Article  PubMed  CAS  Google Scholar 

  43. Chan K, Kan YW (1999) Nrf2 is essential for protection against acute pulmonary injury in mice. Proc Natl Acad Sci U S A 96(22):12731–12736

    Article  PubMed  CAS  Google Scholar 

  44. Yu X, Kensler T (2005) Nrf2 as a target for cancer chemoprevention. Mutat Res 591(1–2):93–102. doi:10.1016/j.mrfmmm.2005.04.017, pii: S0027-5107(05)00309-X

    Article  PubMed  CAS  Google Scholar 

  45. Goerttler K, Loehrke H, Schweizer J, Hesse B (1979) Systemic two-stage carcinogenesis in the epithelium of the forestomach of mice using 7,12-dimethylbenz(a)anthracene as initiator and the phorbol ester 12-O-tetradecanoylphorbol-13-acetate as promoter. Cancer Res 39(4):1293–1297

    PubMed  CAS  Google Scholar 

  46. Bartsch H, Nair J (2006) Chronic inflammation and oxidative stress in the genesis and perpetuation of cancer: role of lipid peroxidation, DNA damage, and repair. Langenbecks Arch Surg 391(5):499–510. doi:10.1007/s00423-006-0073-1

    Article  PubMed  Google Scholar 

  47. Coussens LM, Werb Z (2002) Inflammation and cancer. Nature 420(6917):860–867. doi:10.1038/nature01322nature01322

    Article  PubMed  CAS  Google Scholar 

  48. Hussain SP, Harris CC (2007) Inflammation and cancer: an ancient link with novel potentials. Int J Cancer 121(11):2373–2380. doi:10.1002/ijc.23173

    Article  PubMed  CAS  Google Scholar 

  49. Ekbom A, Helmick C, Zack M, Adami HO (1990) Ulcerative colitis and colorectal cancer. A population-based study. N Engl J Med 323(18):1228–1233. doi:10.1056/NEJM199011013231802

    Article  PubMed  CAS  Google Scholar 

  50. Boismenu R, Chen Y (2000) Insights from mouse models of colitis. J Leukoc Biol 67(3):267–278

    PubMed  CAS  Google Scholar 

  51. Khor TO, Huang M-T, Kwon KH, Chan JY, Reddy BS, Kong A-N (2006) Nrf2-deficient mice have an increased susceptibility to dextran sulfate sodium–induced colitis. Cancer Res 66(24):11580–11584. doi:10.1158/0008-5472.can-06-3562

    Article  PubMed  CAS  Google Scholar 

  52. Wang H, Khor TO, Yang Q, Huang Y, T-y W, Saw CL-L, Lin W, Androulakis IP, Kong A-NT (2012) Pharmacokinetics and pharmacodynamics of phase II drug metabolizing/antioxidant enzymes gene response by anticancer agent sulforaphane in rat lymphocytes. Mol Pharm 9(10):2819–2827. doi:10.1021/mp300130k

    Article  PubMed  CAS  Google Scholar 

  53. Dayneka NL, Garg V, Jusko WJ (1993) Comparison of four basic models of indirect pharmacodynamic responses. J Pharmacokinet Biopharm 21(4):457–478

    Article  PubMed  CAS  Google Scholar 

  54. Sadikovic B, Al-Romaih K, Squire JA, Zielenska M (2008) Cause and consequences of genetic and epigenetic alterations in human cancer. Curr Genomics 9(6):394–408. doi:10.2174/138920208785699580

    Article  PubMed  CAS  Google Scholar 

  55. Link A, Balaguer F, Goel A (2010) Cancer chemoprevention by dietary polyphenols: promising role for epigenetics. Biochem Pharmacol 80(12):1771–1792. doi:10.1016/j.bcp.2010.06.036

    Google Scholar 

  56. Prendergast GC, Ziff EB (1991) Methylation-sensitive sequence-specific DNA binding by the c-Myc basic region. Science 251(4990):186–189

    Article  PubMed  CAS  Google Scholar 

  57. Suzuki MM, Bird A (2008) DNA methylation landscapes: provocative insights from epigenomics. Nat Rev Genet 9(6):465–476

    Article  PubMed  CAS  Google Scholar 

  58. Esteller M (2002) CpG island hypermethylation and tumor suppressor genes: a booming present, a brighter future. Oncogene 21(35):5427–5440

    Article  PubMed  CAS  Google Scholar 

  59. Hendrich B, Bird A (1998) Identification and characterization of a family of mammalian methyl-CpG binding proteins. Mol Cell Biol 18(11):6538–6547

    PubMed  CAS  Google Scholar 

  60. Lewis JD, Meehan RR, Henzel WJ, Maurer-Fogy I, Jeppesen P, Klein F, Bird A (1992) Purification, sequence, and cellular localization of a novel chromosomal protein that binds to methylated DNA. Cell 69(6):905–914

    Article  PubMed  CAS  Google Scholar 

  61. Feng Q, Zhang Y (2001) The MeCP1 complex represses transcription through preferential binding, remodeling, and deacetylating methylated nucleosomes. Genes Dev 15(7):827–832

    PubMed  CAS  Google Scholar 

  62. Nan X, Ng HH, Johnson CA, Laherty CD, Turner BM, Eisenman RN, Bird A (1998) Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature 393(6683):386–389

    Article  PubMed  CAS  Google Scholar 

  63. Li LC, Dahiya R (2002) MethPrimer: designing primers for methylation PCRs. Bioinformatics 18(11):1427–1431

    Article  PubMed  CAS  Google Scholar 

  64. Clark SJ, Harrison J, Paul CL, Frommer M (1994) High sensitivity mapping of methylated cytosines. Nucleic Acids Res 22(15):2990–2997

    Article  PubMed  CAS  Google Scholar 

  65. Grunau C, Clark SJ, Rosenthal A (2001) Bisulfite genomic sequencing: systematic investigation of critical experimental parameters. Nucleic Acids Res 29(13):E65–E75

    Google Scholar 

  66. Solomon MJ, Larsen PL, Varshavsky A (1988) Mapping protein–DNA interactions in vivo with formaldehyde: evidence that histone H4 is retained on a highly transcribed gene. Cell 53(6):937–947, pii: S0092-8674(88)90469-2

    Article  PubMed  CAS  Google Scholar 

  67. Haring M, Offermann S, Danker T, Horst I, Peterhansel C, Stam M (2007) Chromatin immunoprecipitation: optimization, quantitative analysis and data normalization. Plant Methods 3:11. doi:10.1186/1746-4811-3-11, pii: 1746-4811-3-11

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Fuentes, F., Shu, L., Lee, J.H., Su, ZY., Lee, KR., Kong, AN.T. (2014). Nrf2-Target Approaches in Cancer Chemoprevention Mediated by Dietary Phytochemicals. In: Bode, A., Dong, Z. (eds) Cancer Prevention. Methods in Pharmacology and Toxicology. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4614-9227-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-9227-6_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4614-9226-9

  • Online ISBN: 978-1-4614-9227-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics