Imaging-Based Measures of Synaptic Tenacity

  • Noam E. Ziv
Part of the Neuromethods book series (NM, volume 84)


Activity-induced modification of synaptic connections (“synaptic plasticity”) is widely believed to represent a major mechanism for modifying the functional properties of neuronal networks, possibly providing the basis for phenomena collectively referred to as “learning and memory.” This belief has an important corollary: It implies that synapses, when not driven to change their characteristics by physiologically relevant stimuli, should retain these characteristics over time. Recent studies, however, have shown that synaptic molecules, organelles, and even patches of synaptic specializations continuously move in, out, and between synapses at significant rates. Given these intense dynamics, the ability of synapses to retain their individual characteristics over behaviorally relevant time scales is not at all obvious.

This chapter focuses on techniques used to study the cellular and molecular dynamics of synaptic components and on quantitative measures of synaptic tenacity—the capacity of synapses to maintain their characteristics over time. These include fluorescence recovery after photobleaching (FRAP), fluorescence recovery after photoactivation (FRAPA), and several analytical tools used to quantify the (in)stability of individual synapses and of synaptic configurations.

Key words

Synapse Synaptic tenacity FRAP Photoactivation Fluorescent proteins 


  1. 1.
    Tsuriel S, Fisher A, Wittenmayer N, Dresbach T, Garner CC, Ziv NE (2009) Exchange and redistribution dynamics of the cytoskeleton of the active zone molecule bassoon. J Neurosci 29(2):351–358. doi: 10.1523/JNEUROSCI. 4777-08.2009 29/2/351 [pii]Google Scholar
  2. 2.
    Minerbi A, Kahana R, Goldfeld L, Kaufman M, Marom S, Ziv NE (2009) Long-term relationships between synaptic tenacity, synaptic remodeling, and network activity. PLoS Biol 7(6): e1000136. doi: 10.1371/journal.pbio.1000136 PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Fisher-Lavie A, Zeidan A, Stern M, Garner CC, Ziv NE (2011) Use dependence of presynaptic tenacity. J Neurosci 31(46):16770–16780. doi: 10.1523/JNEUROSCI.3384-11. 2011 31/46/16770 [pii]Google Scholar
  4. 4.
    Zeidan A, Ziv NE (2012) Neuroligin-1 loss is associated with reduced tenacity of excitatory synapses. PLoS One 7(7):e42314. doi: 10.1371/ journal.pone.0042314 PONE-D-12-12259 [pii]
  5. 5.
    Wolff JR, Laskawi R, Spatz WB, Missler M (1995) Structural dynamics of synapses and synaptic components. Behav Brain Res 66(1–2): 13–20PubMedCrossRefGoogle Scholar
  6. 6.
    Specht CG, Triller A (2008) The dynamics of synaptic scaffolds. Bioessays 30(11–12):1062–1074. doi: 10.1002/bies.20831 PubMedCrossRefGoogle Scholar
  7. 7.
    Staras K (2007) Share and share alike: trading of presynaptic elements between central synapses. Trends Neurosci 30(6):292–298. doi: S0166-2236(07)00098-7 [pii]  10.1016/j.tins. 2007.04.005 Google Scholar
  8. 8.
    Gerrow K, Triller A (2010) Synaptic stability and plasticity in a floating world. Curr Opin Neurobiol 20(5):631–639. doi: 10.1016/j.conb. 2010.06.010 S0959-4388(10)00107-8 [pii]Google Scholar
  9. 9.
    Staras K, Branco T (2010) Sharing vesicles between central presynaptic terminals: implications for synaptic function. Front Synaptic Neurosci 2:20. doi: 10.3389/fnsyn.2010.00020 PubMedCentralPubMedGoogle Scholar
  10. 10.
    Axelrod D, Koppel DE, Schlessinger J, Elson E, Webb WW (1976) Mobility measurement by analysis of fluorescence photobleaching recovery kinetics. Biophys J 16(9):1055–1069PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Staras K, Mikulincer D, Gitler D (2013) Monitoring and quantifying dynamic physiological processes in live neurons using fluorescence recovery after photobleaching. J Neurochem. doi: 10.1111/jnc.12240 PubMedGoogle Scholar
  12. 12.
    Cohen LD, Zuchman R, Sorokina O, Muller A, Dieterich DC, Armstrong JD, Ziv T, Ziv NE (2013) Metabolic turnover of synaptic proteins: kinetics, interdependencies and implications for synaptic maintenance. PLoS One 8(5):e63191. doi: 10.1371/journal.pone.0063191 PONE-D-13-09997 [pii]PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Krueger SR, Kolar A, Fitzsimonds RM (2003) The presynaptic release apparatus is functional in the absence of dendritic contact and highly mobile within isolated axons. Neuron 40(5):945–957. doi:S0896627303007293 [pii]PubMedCrossRefGoogle Scholar
  14. 14.
    Darcy KJ, Staras K, Collinson LM, Goda Y (2006) Constitutive sharing of recycling synaptic vesicles between presynaptic boutons. Nat Neurosci 9(3):315–321. doi:nn1640 [pii] 10.1038/nn1640PubMedCrossRefGoogle Scholar
  15. 15.
    Kalla S, Stern M, Basu J, Varoqueaux F, Reim K, Rosenmund C, Ziv NE, Brose N (2006) Molecular dynamics of a presynaptic active zone protein studied in Munc13-1-enhanced yellow fluorescent protein knock-in mutant mice. J Neurosci 26(50):13054–13066. doi: 26/50/13054 [pii]  10.1523/JNEUROSCI. 4330-06.2006 Google Scholar
  16. 16.
    Herzog E, Nadrigny F, Silm K, Biesemann C, Helling I, Bersot T, Steffens H, Schwartzmann R, Nagerl UV, El Mestikawy S, Rhee J, Kirchhoff F, Brose N (2011) In vivo imaging of intersynaptic vesicle exchange using VGLUT1 Venus knock-in mice. J Neurosci 31(43): 15544–15559. doi: 10.1523/JNEUROSCI. 2073-11.2011 31/43/15544 [pii]Google Scholar
  17. 17.
    Chudakov DM, Matz MV, Lukyanov S, Lukyanov KA (2010) Fluorescent proteins and their applications in imaging living cells and tissues. Physiol Rev 90(3):1103–1163. doi:  10.1152/physrev.00038.2009 90/3/1103 [pii]Google Scholar
  18. 18.
    Tsuriel S, Geva R, Zamorano P, Dresbach T, Boeckers T, Gundelfinger ED, Garner CC, Ziv NE (2006) Local sharing as a predominant determinant of synaptic matrix molecular dynamics. PLoS Biol 4(9):e271. doi:05- PLBI-RA-1440R5 [pii]  10.1371/journal.pbio. 0040271 Google Scholar
  19. 19.
    Scott DA, Das U, Tang Y, Roy S (2011) Mechanistic logic underlying the axonal transport of cytosolic proteins. Neuron 70(3):441–454. doi: 10.1016/j.neuron.2011. 03.022 S0896-6273(11)00295-9 [pii]Google Scholar
  20. 20.
    Adams CL, Chen YT, Smith SJ, Nelson WJ (1998) Mechanisms of epithelial cell-cell adhesion and cell compaction revealed by high-resolution tracking of E-cadherin-green fluorescent protein. J Cell Biol 142(4):1105–1119PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Patterson GH, Lippincott-Schwartz J (2002) A photoactivatable GFP for selective photolabeling of proteins and cells. Science 297(5588):1873–1877. doi: 10.1126/science. 1074952 297/5588/1873 [pii]Google Scholar
  22. 22.
    Gray NW, Weimer RM, Bureau I, Svoboda K (2006) Rapid redistribution of synaptic PSD-95 in the neocortex in vivo. PLoS Biol 4(11): e370. doi:06-PLBI-RA-1140R2 [pii]  10.1371/ journal.pbio.0040370
  23. 23.
    Staras K, Branco T, Burden JJ, Pozo K, Darcy K, Marra V, Ratnayaka A, Goda Y (2010) A vesicle superpool spans multiple presynaptic terminals in hippocampal neurons. Neuron 66(1):37–44. doi: 10.1016/j.neuron.2010.03. 020 S0896-6273(10)00191-1 [pii]Google Scholar
  24. 24.
    Okada D, Ozawa F, Inokuchi K (2009) Input-specific spine entry of soma-derived Vesl-1S protein conforms to synaptic tagging. Science 324(5929):904–909. doi: 10.1126/science. 1171498 324/5929/904 [pii]Google Scholar
  25. 25.
    Rasse TM, Fouquet W, Schmid A, Kittel RJ, Mertel S, Sigrist CB, Schmidt M, Guzman A, Merino C, Qin G, Quentin C, Madeo FF, Heckmann M, Sigrist SJ (2005) Glutamate receptor dynamics organizing synapse formation in vivo. Nat Neurosci 8(7):898–905PubMedCrossRefGoogle Scholar
  26. 26.
    Blanpied TA, Kerr JM, Ehlers MD (2008) Structural plasticity with preserved topology in the postsynaptic protein network. Proc Natl Acad Sci U S A 105(34):12587–12592. doi:  10.1073/pnas.0711669105 0711669105 [pii]Google Scholar
  27. 27.
    Honkura N, Matsuzaki M, Noguchi J, Ellis-Davies GC, Kasai H (2008) The subspine organization of actin fibers regulates the structure and plasticity of dendritic spines. Neuron 57(5):719–729PubMedCrossRefGoogle Scholar
  28. 28.
    Sturgill JF, Steiner P, Czervionke BL, Sabatini BL (2009) Distinct domains within PSD-95 mediate synaptic incorporation, stabilization, and activity-dependent trafficking. J Neurosci 29(41):12845–12854. doi: 10.1523/JNEUROSCI. 1841-09. 2009 29/41/12845 [pii]Google Scholar
  29. 29.
    Bloodgood BL, Sabatini BL (2005) Neuronal activity regulates diffusion across the neck of dendritic spines. Science 310(5749):866–869. doi:310/5749/866 [pii]  10.1126/science. 1114816 Google Scholar
  30. 30.
    Yasumatsu N, Matsuzaki M, Miyazaki T, Noguchi J, Kasai H (2008) Principles of long-term dynamics of dendritic spines. J Neurosci 28(50):13592–13608.doi: 10.1523/JNEUROSCI.0603- 08.2008 28/50/13592 [pii]Google Scholar
  31. 31.
    Matz J, Gilyan A, Kolar A, McCarvill T, Krueger SR (2010) Rapid structural alterations of the active zone lead to sustained changes in neurotransmitter release. Proc Natl Acad Sci U S A 107(19):8836–8841. doi: 10.1073/pnas. 0906087107 0906087107 [pii]
  32. 32.
    Kaufman M, Corner MA, Ziv NE (2012) Long-term relationships between cholinergic tone, synchronous bursting and synaptic remodeling. PLoS One 7(7):e40980. doi:  10.1371/journal.pone.0040980 PONE-D-12- 08904 [pii]
  33. 33.
    Loewenstein Y, Kuras A, Rumpel S (2011) Multiplicative dynamics underlie the emergence of the log-normal distribution of spine sizes in the neocortex in vivo. J Neurosci 31(26): 9481–9488. doi: 10.1523/JNEUROSCI. 6130- 10.2011 31/26/9481 [pii]
  34. 34.
    Holtmaat A, Svoboda K (2009) Experience-dependent structural synaptic plasticity in the mammalian brain. Nat Rev Neurosci 10(9): 647–658.doi: 10.1038/nrn2699 nrn2699[pii]Google Scholar
  35. 35.
    Turrigiano GG, Nelson SB (2004) Homeostatic plasticity in the developing nervous system. Nat Rev Neurosci 5(2):97–107. doi: 10.1038/nrn1327 nrn1327 [pii]PubMedCrossRefGoogle Scholar
  36. 36.
    Sasaki T, Matsuki N, Ikegaya Y (2007) Metastability of active CA3 networks. J Neurosci 27(3):517–528. doi:27/3/517 [pii]  10.1523/ JNEUROSCI.4514-06.2007 Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Noam E. Ziv
    • 1
    • 2
  1. 1.Department of Physiology and Biophysics and Rappaport InstituteTechnion Faculty of MedicineHaifaIsrael
  2. 2.Network Biology Research LaboratoriesLorry Lokey Center for Life Sciences & EngineeringHaifaIsrael

Personalised recommendations