Advertisement

Isolation and Culture of Human Neurons, Microglia, and Astrocytes

  • Li Wu
  • Santhi GorantlaEmail author
Protocol
  • 4k Downloads
Part of the Springer Protocols Handbooks book series (SPH)

Abstract

Neuronal and glial cell cultures are important parts of neuroscience laboratories. Because the human brain is the least accessible organ, experimental studies on brain cell cultures provide valuable information. The ability to experiment on real neurons and glial cells in a controlled environment under specific conditions is essential to understand cellular and molecular mechanisms in the brain during development and in disease. Isolation and culture of neurons and glial cells is tricky but very important techniques for neuroscientists. These cells are very fragile, and primary culture of brain cells can be challenging. This chapter describes step-by-step protocols for the isolation and enrichment of different cell types from human brain tissue, and the optimal conditions needed to achieve viable and healthy neuronal and glial cell cultures. Immunocytochemical staining protocols for the brain cells are described with illustrations.

Keywords

Human Fetal Neurons Astrocytes Microglia HIV 

References

  1. Agostinho P, Cunha RA, Oliveira C (2010) Neuroinflammation, oxidative stress and the pathogenesis of Alzheimer’s disease. Curr Pharm Des 16:2766–2778CrossRefPubMedGoogle Scholar
  2. Amor S, Puentes F, Baker D, van der Valk P (2010) Inflammation in neurodegenerative diseases. Immunology 129:154–169CrossRefPubMedPubMedCentralGoogle Scholar
  3. Barreto GE, Gonzalez J, Torres Y, Morales L (2011) Astrocytic-neuronal crosstalk: implications for neuroprotection from brain injury. Neurosci Res 71:107–113CrossRefPubMedGoogle Scholar
  4. Borgmann K, Gendelman HE, Ghorpade A (2005) Isolation and HIV-1 infection of primary human microglia from fetal and adult tissue. Methods Mol Biol 304:49–70PubMedGoogle Scholar
  5. Brack-Werner R (1999) Astrocytes: HIV cellular reservoirs and important participants in neuropathogenesis. AIDS 13:1–22CrossRefPubMedGoogle Scholar
  6. Buch S, Yao H, Guo M, Mori T, Mathias-Costa B, Singh V, Seth P, Wang J, Su TP (2012) Cocaine and HIV-1 interplay in CNS: cellular and molecular mechanisms. Curr HIV Res 10:425–428CrossRefPubMedPubMedCentralGoogle Scholar
  7. Cisneros IE, Ghorpade A (2012) HIV-1, methamphetamine and astrocyte glutamate regulation: combined excitotoxic implications for neuro-AIDS. Curr HIV Res 10:392–406CrossRefPubMedPubMedCentralGoogle Scholar
  8. Conant K, Tornatore C, Atwood W, Meyers K, Traub R, Major EO (1994) In vivo and in vitro infection of the astrocyte by HIV-1. Adv Neuroimmunol 4:287–289CrossRefPubMedGoogle Scholar
  9. Deshpande M, Zheng J, Borgmann K, Persidsky R, Wu L, Schellpeper C, Ghorpade A (2005) Role of activated astrocytes in neuronal damage: potential links to HIV-1-associated dementia. Neurotox Res 7:183–192CrossRefPubMedGoogle Scholar
  10. Dhar A, Gardner J, Borgmann K, Wu L, Ghorpade A (2006) Novel role of TGF-beta in differential astrocyte-TIMP-1 regulation: implications for HIV-1-dementia and neuroinflammation. J Neurosci Res 83:1271–1280CrossRefPubMedGoogle Scholar
  11. Dou H, Birusingh K, Faraci J, Gorantla S, Poluektova LY, Maggirwar SB, Dewhurst S, Gelbard HA, Gendelman HE (2003) Neuroprotective activities of sodium valproate in a murine model of human immunodeficiency virus-1 encephalitis. J Neurosci 23:9162–9170PubMedGoogle Scholar
  12. Dou H, Ellison B, Bradley J, Kasiyanov A, Poluektova LY, Xiong H, Maggirwar S, Dewhurst S, Gelbard HA, Gendelman HE (2005) Neuroprotective mechanisms of lithium in murine human immunodeficiency virus-1 encephalitis. J Neurosci 25:8375–8385CrossRefPubMedGoogle Scholar
  13. Eggert D, Dash PK, Serradji N, Dong CZ, Clayette P, Heymans F, Dou H, Gorantla S, Gelbard HA, Poluektova L, Gendelman HE (2009) Development of a platelet-activating factor antagonist for HIV-1 associated neurocognitive disorders. J Neuroimmunol 213:47–59CrossRefPubMedPubMedCentralGoogle Scholar
  14. Elder GA, Major EO (1988) Early appearance of type II astrocytes in developing human fetal brain. Brain Res 470:146–150CrossRefPubMedGoogle Scholar
  15. Filipovic R, Zecevic N (2008) Neuroprotective role of minocycline in co-cultures of human fetal neurons and microglia. Exp Neurol 211:41–51CrossRefPubMedGoogle Scholar
  16. Gehrmann J, Matsumoto Y, Kreutzberg GW (1995) Microglia: intrinsic immuneffector cell of the brain. Brain Res Brain Res Rev 20:269–287CrossRefPubMedGoogle Scholar
  17. Gendelman HE, Lipton SA, Tardieu M, Bukrinsky MI, Nottet HS (1994) The neuropathogenesis of HIV-1 infection. J Leukoc Biol 56:389–398CrossRefPubMedGoogle Scholar
  18. Ghorpade A, Holter S, Borgmann K, Persidsky R, Wu L (2003) HIV-1 and IL-1 beta regulate Fas ligand expression in human astrocytes through the NF-kappa B pathway. J Neuroimmunol 141:141–149CrossRefPubMedGoogle Scholar
  19. Ghorpade A, Persidsky Y, Swindells S, Borgmann K, Persidsky R, Holter S, Cotter R, Gendelman HE (2005) Neuroinflammatory responses from microglia recovered from HIV-1-infected and seronegative subjects. J Neuroimmunol 163:145–156CrossRefPubMedGoogle Scholar
  20. Gorantla S, Liu J, Wang T, Holguin A, Sneller HM, Dou H, Kipnis J, Poluektova L, Gendelman HE (2008) Modulation of innate immunity by copolymer-1 leads to neuroprotection in murine HIV-1 encephalitis. Glia 56:223–232CrossRefPubMedPubMedCentralGoogle Scholar
  21. Hassan NF, Campbell DE, Rifat S, Douglas SD (1991) Isolation and characterization of human fetal brain-derived microglia in in vitro culture. Neuroscience 41:149–158CrossRefPubMedGoogle Scholar
  22. Hayflick L, Plotkin SA, Norton TW, Koprowski H (1962) Preparation of poliovirus vaccines in a human fetal diploid cell strain. Am J Hyg 75:240–258PubMedGoogle Scholar
  23. Huang Y, Zhao L, Jia B, Wu L, Li Y, Curthoys N, Zheng JC (2011) Glutaminase dysregulation in HIV-1-infected human microglia mediates neurotoxicity: relevant to HIV-1-associated neurocognitive disorders. J Neurosci 31:15195–15204CrossRefPubMedPubMedCentralGoogle Scholar
  24. Jana M, Jana A, Pal U, Pahan K (2007) A simplified method for isolating highly purified neurons, oligodendrocytes, astrocytes, and microglia from the same human fetal brain tissue. Neurochem Res 32:2015–2022CrossRefPubMedPubMedCentralGoogle Scholar
  25. Jordan PM, Ojeda LD, Thonhoff JR, Gao J, Boehning D, Yu Y, Wu P (2009) Generation of spinal motor neurons from human fetal brain-derived neural stem cells: role of basic fibroblast growth factor. J Neurosci Res 87:318–332CrossRefPubMedPubMedCentralGoogle Scholar
  26. Kadiu I, Glanzer JG, Kipnis J, Gendelman HE, Thomas MP (2005) Mononuclear phagocytes in the pathogenesis of neurodegenerative diseases. Neurotox Res 8:25–50CrossRefPubMedGoogle Scholar
  27. Kallur T, Darsalia V, Lindvall O, Kokaia Z (2006) Human fetal cortical and striatal neural stem cells generate region-specific neurons in vitro and differentiate extensively to neurons after intrastriatal transplantation in neonatal rats. J Neurosci Res 84:1630–1644CrossRefPubMedGoogle Scholar
  28. Kaul M, Zheng J, Okamoto S, Gendelman HE, Lipton SA (2005) HIV-1 infection and AIDS: consequences for the central nervous system. Cell Death Differ 12(Suppl 1):878–892CrossRefPubMedGoogle Scholar
  29. Kerkovich DM, Sapp D, Weidenheim K, Brosnan CF, Pfeiffer SE, Yeh HH, Busciglio J (1999) Fetal human cortical neurons grown in culture: morphological differentiation, biochemical correlates and development of electrical activity. Int J Dev Neurosci 17:347–356CrossRefPubMedGoogle Scholar
  30. Lambert N, Lambot MA, Bilheu A, Albert V, Englert Y, Libert F, Noel JC, Sotiriou C, Holloway AK, Pollard KS, Detours V, Vanderhaeghen P (2011) Genes expressed in specific areas of the human fetal cerebral cortex display distinct patterns of evolution. PLoS One 6:e17753CrossRefPubMedPubMedCentralGoogle Scholar
  31. Lan X, Xu J, Kiyota T, Peng H, Zheng JC, Ikezu T (2011) HIV-1 reduces Abeta-degrading enzymatic activities in primary human mononuclear phagocytes. J Immunol 186:6925–6932CrossRefPubMedPubMedCentralGoogle Scholar
  32. Lan X, Kiyota T, Hanamsagar R, Huang Y, Andrews S, Peng H, Zheng JC, Swindells S, Carlson GA, Ikezu T (2012) The effect of HIV protease inhibitors on amyloid-beta peptide degradation and synthesis in human cells and Alzheimer’s disease animal model. J Neuroimmune Pharmacol 7:412–423CrossRefPubMedGoogle Scholar
  33. Lee SC, Hatch WC, Liu W, Brosnan CF, Dickson DW (1993) Productive infection of human fetal microglia in vitro by HIV-1. Ann N Y Acad Sci 693:314–316CrossRefPubMedGoogle Scholar
  34. Lindvall O, Rehncrona S, Brundin P, Gustavii B, Astedt B, Widner H, Lindholm T, Bjorklund A, Leenders KL, Rothwell JC, Frackowiak R, Marsden D, Johnels B, Steg G, Freedman R, Hoffer BJ, Seiger A, Bygdeman M, Stromberg I, Olson L (1989) Human fetal dopamine neurons grafted into the striatum in two patients with severe Parkinson’s disease. A detailed account of methodology and a 6-month follow-up. Arch Neurol 46:615–631CrossRefPubMedGoogle Scholar
  35. Liu S, Tian Z, Yin F, Zhao Q, Fan M (2009) Generation of dopaminergic neurons from human fetal mesencephalic progenitors after co-culture with striatal-conditioned media and exposure to lowered oxygen. Brain Res Bull 80:62–68CrossRefPubMedGoogle Scholar
  36. Luessi F, Siffrin V, Zipp F (2012) Neurodegeneration in multiple sclerosis: novel treatment strategies. Expert Rev Neurother 12:1061–1076; quiz 1077CrossRefPubMedGoogle Scholar
  37. Marcello E, Epis R, Saraceno C, Di Luca M (2012) Synaptic dysfunction in Alzheimer’s disease. Adv Exp Med Biol 970:573–601CrossRefPubMedGoogle Scholar
  38. Mattson MP (2005) Human fetal brain cell culture. Methods Mol Med 107:163–171PubMedGoogle Scholar
  39. Mattson MP, Rychlik B, You JS, Sisken JE (1991) Sensitivity of cultured human embryonic cerebral cortical neurons to excitatory amino acid-induced calcium influx and neurotoxicity. Brain Res 542:97–106CrossRefPubMedGoogle Scholar
  40. Mattson MP, Kumar KN, Wang H, Cheng B, Michaelis EK (1993) Basic FGF regulates the expression of a functional 71 kDa NMDA receptor protein that mediates calcium influx and neurotoxicity in hippocampal neurons. J Neurosci 13:4575–4588PubMedGoogle Scholar
  41. McCarthy M, Auger D, He J, Wood C (1998) Cytomegalovirus and human herpesvirus-6 trans-activate the HIV-1 long terminal repeat via multiple response regions in human fetal astrocytes. J Neurovirol 4:495–511CrossRefPubMedGoogle Scholar
  42. Messam CA, Major EO (2000) Stages of restricted HIV-1 infection in astrocyte cultures derived from human fetal brain tissue. J Neurovirol 6(Suppl 1):S90–94PubMedGoogle Scholar
  43. Molofsky AV, Krencik R, Ullian EM, Tsai HH, Deneen B, Richardson WD, Barres BA, Rowitch DH (2012) Astrocytes and disease: a neurodevelopmental perspective. Genes Dev 26:891–907CrossRefPubMedPubMedCentralGoogle Scholar
  44. Mosley RL, Benner EJ, Kadiu I, Thomas M, Boska MD, Hasan K, Laurie C, Gendelman HE (2006) Neuroinflammation, oxidative stress and the pathogenesis of Parkinson’s disease. Clin Neurosci Res 6:261–281CrossRefPubMedPubMedCentralGoogle Scholar
  45. Ousman SS, Kubes P (2012) Immune surveillance in the central nervous system. Nat Neurosci 15:1096–1101CrossRefPubMedGoogle Scholar
  46. Pelvig DP, Pakkenberg H, Stark AK, Pakkenberg B (2008) Neocortical glial cell numbers in human brains. Neurobiol Aging 29:1754–1762CrossRefPubMedGoogle Scholar
  47. Petito CK, Kerza-Kwiatecki AP, Gendelman HE, McCarthy M, Nath A, Podack ER, Shapshak P, Wiley CA (1999) Review: neuronal injury in HIV infection. J Neurovirol 5:327–341CrossRefPubMedGoogle Scholar
  48. Picconi B, Piccoli G, Calabresi P (2012) Synaptic dysfunction in Parkinson’s disease. Adv Exp Med Biol 970:553–572CrossRefPubMedGoogle Scholar
  49. Plotkin SA, Farquhar JD, Katz M, Buser F (1969) Attenuation of RA 27–3 rubella virus in WI-38 human diploid cells. Am J Dis Child 118:178–185PubMedGoogle Scholar
  50. Ransom BR, Ransom CB (2012) Astrocytes: multitalented stars of the central nervous system. Methods Mol Biol 814:3–7CrossRefPubMedGoogle Scholar
  51. Reynolds A, Laurie C, Mosley RL, Gendelman HE (2007) Oxidative stress and the pathogenesis of neurodegenerative disorders. Int Rev Neurobiol 82:297–325CrossRefPubMedGoogle Scholar
  52. Ritchie T, Kim HS, Cole R, deVellis J, Noble EP (1988) Alcohol-induced alterations in phosphoinositide hydrolysis in astrocytes. Alcohol 5:183–187CrossRefPubMedGoogle Scholar
  53. Rostasy K, Monti L, Lipton SA, Hedreen JC, Gonzalez RG, Navia BA (2005) HIV leucoencephalopathy and TNFalpha expression in neurones. J Neurol Neurosurg Psychiatry 76:960–964CrossRefPubMedPubMedCentralGoogle Scholar
  54. Rumzan R, Chen X, Li YM (2012) Gray matter involvement in patients with multiple sclerosis as shown by magnetic resonance imaging. Chin Med J 125:2361–2364PubMedGoogle Scholar
  55. Schultz W (2011) Potential vulnerabilities of neuronal reward, risk, and decision mechanisms to addictive drugs. Neuron 69:603–617CrossRefPubMedGoogle Scholar
  56. Shulha HP, Crisci JL, Reshetov D, Tushir JS, Cheung I, Bharadwaj R, Chou HJ, Houston IB, Peter CJ, Mitchell AC, Yao WD, Myers RH, Chen JF, Preuss TM, Rogaev EI, Jensen JD, Weng Z, Akbarian S (2012) Human-specific histone methylation signatures at transcription start sites in prefrontal neurons. PLoS Biol 10:e1001427CrossRefPubMedPubMedCentralGoogle Scholar
  57. Streit WJ, Graeber MB, Kreutzberg GW (1988) Functional plasticity of microglia: a review. Glia 1:301–307CrossRefPubMedGoogle Scholar
  58. Tornatore C, Chandra R, Berger JR, Major EO (1994a) HIV-1 infection of subcortical astrocytes in the pediatric central nervous system. Neurology 44:481–487CrossRefPubMedGoogle Scholar
  59. Tornatore C, Meyers K, Atwood W, Conant K, Major E (1994b) Temporal patterns of human immunodeficiency virus type 1 transcripts in human fetal astrocytes. J Virol 68:93–102PubMedPubMedCentralGoogle Scholar
  60. Wu P, Tarasenko YI, Gu Y, Huang LY, Coggeshall RE, Yu Y (2002) Region-specific generation of cholinergic neurons from fetal human neural stem cells grafted in adult rat. Nat Neurosci 5:1271–1278CrossRefPubMedGoogle Scholar
  61. Xiong H, Zeng YC, Lewis T, Zheng J, Persidsky Y, Gendelman HE (2000) HIV-1 infected mononuclear phagocyte secretory products affect neuronal physiology leading to cellular demise: relevance for HIV-1-associated dementia. J Neurovirol 6(Suppl 1):S14–23PubMedGoogle Scholar
  62. Zhao L, Huang Y, Tian C, Taylor L, Curthoys N, Wang Y, Vernon H, Zheng J (2012) Interferon-alpha regulates glutaminase 1 promoter through STAT1 phosphorylation: relevance to HIV-1 associated neurocognitive disorders. PLoS One 7:e32995CrossRefPubMedPubMedCentralGoogle Scholar
  63. Zink WE, Zheng J, Persidsky Y, Poluektova L, Gendelman HE (1999) The neuropathogenesis of HIV-1 infection. FEMS Immunol Med Microbiol 26:233–241CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Pharmacology and Experimental NeuroscienceUniversity of Nebraska Medical CenterOmahaUSA

Personalised recommendations