Animal Models: Behavior and Pathology: Preclinical Assessment of the Putative Cognitive Deficits in HAND

  • Landhing M. Moran
  • Rosemarie M. Booze
  • Charles F. MactutusEmail author
Part of the Springer Protocols Handbooks book series (SPH)


Despite the reduced prevalence of HIV-1-associated dementia in the era of combination antiretroviral therapy (CART), nearly half of all HIV-1-positive individuals on CART are afflicted with mild to severe HIV-1-associated neurocognitive disorders (HAND). A greater understanding of the progression of HAND and the development of potential therapeutics require preclinical studies that utilize an integrative profile of cognitive function, from which valid inferences can be drawn about underlying processes. We propose a set of preclinical behavioral tasks that tap various components of executive function, the cognitive domain which shows the greatest decline in the progression of HAND. Fronto-striatal circuitry and dopaminergic systems are integral to executive function and are also particularly vulnerable to injury by HIV-1 infection. The tasks described in this chapter provide measures that are both sensitive to alterations in the function of these systems and relevant to typical cognitive deficits observed in HAND. Further, each of the tasks presently described has a very clear human analogue. Prepulse inhibition of the auditory startle response is a measure of preattentive processing and sensory gating. The multi-choice serial reaction time task assesses different types of attentional processes, including sustained attention, selective attention, and set-shifting. The Morris water maze provides a profile of reference and working memory. Within each behavioral measure, there are a number of variables, which can be manipulated to provide information on several components of executive function, affording the opportunity to model the specific cognitive deficits of HAND.


Sensorimotor gating Selective attention Sustained attention Shifting attention Reference memory Working memory 



This work was supported, in part, by the National Institute on Drug Abuse [Grants DA013137, DA031604, and DA035714] and by the National Institute of Child Health and Human Development [Grant HD043680].


  1. Aksenov MY, Aksenova MV, Silvers JM, Mactutus CF, Booze RM (2008) Different effects of selective dopamine uptake inhibitors, GBR 12909 and WIN 35428, on HIV-1 Tat toxicity in rat fetal midbrain neurons. Neurotoxicology 29:971–977PubMedPubMedCentralCrossRefGoogle Scholar
  2. Aksenova MV, Silvers JM, Aksenov MY, Nath A, Ray PD, Mactutus CF, Booze RM (2006) HIV-1 Tat neurotoxicity in primary cultures of rat midbrain fetal neurons: changes in dopamine transporter binding and immunoreactivity. Neurosci Lett 395:235–239PubMedCrossRefGoogle Scholar
  3. Ances BM, Ellis RJ (2007) Dementia and neurocognitive disorders due to HIV-1 infection. Semin Neurol 27:86–92PubMedCrossRefGoogle Scholar
  4. Antonova E, Parslow D, Brammer M, Simmons A, Williams S, Dawson GR, Morris RG (2011) Scopolamine disrupts hippocampal activity during allocentric spatial memory in humans: an fMRI study using a virtual reality analogue of the Morris water maze. J Psychopharmacol 25:1256–1265PubMedCrossRefGoogle Scholar
  5. Bayer LE, Brown A, Mactutus CF, Booze RM, Strupp BJ (2000) Prenatal cocaine exposure increases sensitivity to the attentional effects of the dopamine D1 agonist SKF81297. J Neurosci 20:8902–8908PubMedGoogle Scholar
  6. Bayer LE, Kakumanu S, Mactutus CF, Booze RM, Strupp BJ (2002) Prenatal cocaine exposure alters sensitivity to the effects of idazoxan in a distraction task. Behav Brain Res 133:185–196PubMedCrossRefGoogle Scholar
  7. Berger JR, Nath A (1997) HIV dementia and the basal ganglia. Intervirology 40:122–131PubMedCrossRefGoogle Scholar
  8. Besson M, Belin D, McNamara R, Theobald DE, Castel A, Beckett VL, Crittenden BM, Newman AH, Everitt BJ, Robbins TW, Dalley JW (2010) Dissociable control of impulsivity in rats by dopamine d2/3 receptors in the core and shell subregions of the nucleus accumbens. Neuropsychopharmacology 35:560–569PubMedCrossRefGoogle Scholar
  9. Bonelli RM, Cummings JL (2007) Frontal-subcortical circuitry and behavior. Dialogues Clin Neurosci 9:141–151PubMedPubMedCentralGoogle Scholar
  10. Braff DL, Geyer MA (1990) Sensorimotor gating and schizophrenia. Human and animal model studies. Arch Gen Psychiatry 47:181–188PubMedCrossRefGoogle Scholar
  11. Braff DL, Geyer MA, Swerdlow NR (2001) Human studies of prepulse inhibition of startle: normal subjects, patient groups, and pharmacological studies. Psychopharmacology (Berl) 156:234–258CrossRefGoogle Scholar
  12. Brandeis R, Brandys Y, Yehuda S (1989) The use of the Morris water maze in the study of memory and learning. Int J Neurosci 48:29–69PubMedCrossRefGoogle Scholar
  13. Bushnell PJ, Strupp BJ (2009) Assessing attention in rodents. In: Buccafusco J (ed) Methods of behavior analysis in neuroscience, 2nd edn. CRC, Boca Raton, FL, pp 119–143Google Scholar
  14. Carman HM, Mactutus CF (2001) Ontogeny of spatial navigation in rats: a role for response requirements? Behav Neurosci 115:870–879PubMedCrossRefGoogle Scholar
  15. Carman HM, Mactutus CF (2002) Proximal versus distal cue utilization in spatial navigation: the role of visual acuity? Neurobiol Learn Mem 78:332–346PubMedCrossRefGoogle Scholar
  16. Carman HM, Booze RM, Mactutus CF (2002) Long-term retention of spatial navigation by preweanling rats. Dev Psychobiol 40:68–77PubMedCrossRefGoogle Scholar
  17. Carman HM, Booze RM, Snow DM, Mactutus CF (2003) Proximal versus distal cue utilization in preweanling spatial localization: the influence of cue number and location. Physiol Behav 79:157–165PubMedCrossRefGoogle Scholar
  18. Cassel JC, Cassel S, Galani R, Kelche C, Will B, Jarrard L (1998) Fimbria-fornix vs selective hippocampal lesions in rats: effects on locomotor activity and spatial learning and memory. Neurobiol Learn Mem 69:22–45PubMedCrossRefGoogle Scholar
  19. Castellanos FX, Fine EJ, Kaysen D, Marsh WL, Rapoport JL, Hallett M (1996) Sensorimotor gating in boys with Tourette’s syndrome and ADHD: preliminary results. Biol Psychiatry 39:33–41PubMedCrossRefGoogle Scholar
  20. Castello E, Baroni N, Pallestrini E (1998) Neurotological auditory brain stem response findings in human immunodeficiency virus-positive patients without neurologic manifestations. Ann Otol Rhinol Laryngol 107:1054–1060PubMedCrossRefGoogle Scholar
  21. Chang L, Lee PL, Yiannoutsos CT, Ernst T, Marra CM, Richards T, Kolson D, Schifitto G, Jarvik JG, Miller EN, Lenkinski R, Gonzalez G, Navia BA (2004) HIV MRS consortium. A multicenter in vivo proton-MRS study of HIV-associated dementia and its relationship to age. Neuroimage 23:1336–1347PubMedCrossRefGoogle Scholar
  22. Chang L, Wang GJ, Volkow ND, Ernst T, Telang F, Logan J, Fowler JS (2008) Decreased brain dopamine transporters are related to cognitive deficits in HIV patients with or without cocaine abuse. Neuroimage 42:869–878PubMedPubMedCentralCrossRefGoogle Scholar
  23. Chudasama Y, Robbins TW (2006) Functions of frontostriatal systems in cognition: comparative neuropsychopharmacological studies in rats, monkeys and humans. Biol Psychol 73:19–38PubMedCrossRefGoogle Scholar
  24. Cummings JL (1993) Frontal-subcortical circuits and human behavior. Arch Neurol 50:873–880PubMedCrossRefGoogle Scholar
  25. Cysique LA, Maruff P, Brew BJ (2004) Prevalence and pattern of neuropsychological impairment in human immunodeficiency virus-infected/acquired immunodeficiency syndrome (HIV/AIDS) patients across pre- and post-highly active antiretroviral therapy eras: a combined study of two cohorts. J Neurovirol 10:350–357PubMedCrossRefGoogle Scholar
  26. D’Hooge R, De Deyn PP (2001) Applications of the Morris water maze in the study of learning and memory. Brain Res Brain Res Rev 36:60–90PubMedCrossRefGoogle Scholar
  27. Davis M (1980) Neurochemical modulation of sensory-motor reactivity: acoustic and tactile startle reflexes. Neurosci Biobehav Rev 4:241–263PubMedCrossRefGoogle Scholar
  28. Dawes S, Suarez P, Casey CY, Cherner M, Marcotte TD, Letendre S, Grant I, Heaton RK (2008) HNRC group. Variable patterns of neuropsychological performance in HIV-1 infection. J Clin Exp Neuropsychol 30:613–626PubMedPubMedCentralCrossRefGoogle Scholar
  29. Devan BD, Blank GS, Petri HL (1992) Place navigation in the Morris water task: effects of reduced platform interval lighting and pseudorandom platform positioning. Psychobiology 20:120–126Google Scholar
  30. Ellis RJ, Deutsch R, Heaton RK, Marcotte TD, McCutchan JA, Nelson JA, Abramson I, Thal LJ, Atkinson JH, Wallace MR, Grant I, Kelly M, Chandler JL, Spector SA, Jernigan T, Masliah E, Dupont R (1997) Neurocognitive impairment is an independent risk factor for death in HIV infection. Arch Neurol 54: 416–424PubMedCrossRefGoogle Scholar
  31. Fein G, Biggins CA, MacKay S (1995) Delayed latency of the event-related brain potential P3A component in HIV disease. Progressive effects with increasing cognitive impairment. Arch Neurol 52:1109–1118PubMedCrossRefGoogle Scholar
  32. Fendt M, Li L, Yeomans JS (2001) Brain stem circuits mediating prepulse inhibition of the startle reflex. Psychopharmacology (Berl) 156:216–224CrossRefGoogle Scholar
  33. Ferris MJ, Frederick-Duus DF, Fadel J, Mactutus CF, Booze RM (2010) Hyperdopaminergic tone in HIV-1 protein treated rats and cocaine sensitization. J Neurochem 115:885–896PubMedPubMedCentralCrossRefGoogle Scholar
  34. Fitting S, Booze RM, Hasselrot U, Mactutus CF (2006a) Intrahippocampal injections of Tat: effects on prepulse inhibition of the auditory startle response in adult male rats. Pharmacol Biochem Behav 84:189–196PubMedCrossRefGoogle Scholar
  35. Fitting S, Booze RM, Mactutus CF (2006b) Neonatal hippocampal Tat injections: developmental effects on prepulse inhibition (PPI) of the auditory startle response. Int J Dev Neurosci 24:275–283PubMedPubMedCentralCrossRefGoogle Scholar
  36. Fitting S, Booze RM, Mactutus CF (2006c) Neonatal intrahippocampal glycoprotein 120 injection: the role of dopaminergic alterations in prepulse inhibition in adult rats. J Pharmacol Exp Ther 318:1352–1358PubMedCrossRefGoogle Scholar
  37. Fitting S, Booze RM, Mactutus CF (2007) Neonatal intrahippocampal gp120 injection: an examination early in development. Neurotoxicology 28:101–107PubMedCrossRefGoogle Scholar
  38. Fitting S, Booze RM, Gilbert CA, Mactutus CF (2008a) Effects of chronic adult dietary restriction on spatial learning in the aged F344 x BN hybrid F1 rat. Physiol Behav 93:560–569PubMedCrossRefGoogle Scholar
  39. Fitting S, Booze RM, Mactutus CF (2008b) Neonatal intrahippocampal injection of the HIV-1 proteins gp120 and Tat: differential effects on behavior and the relationship to stereological hippocampal measures. Brain Res 1232:139–154PubMedPubMedCentralCrossRefGoogle Scholar
  40. Fleshier M (1965) Adequate acoustic stimulus for startle reaction in the rat. J Comp Physiol Psychol 60:200–207CrossRefGoogle Scholar
  41. Floresco SB, Magyar O (2006) Mesocortical dopamine modulation of executive functions: beyond working memory. Psychopharmacology (Berl) 188:567–585CrossRefGoogle Scholar
  42. Foltz TL, Snow DM, Strupp BJ, Booze RM, Mactutus CF (2004) Prenatal intravenous cocaine and the heart rate-orienting response: a dose-response study. Int J Dev Neurosci 22:285–296PubMedCrossRefGoogle Scholar
  43. Gallagher M, Burwell R, Burchinal M (1993) Severity of spatial learning impairment in aging: development of a learning index for performance in the Morris water maze. Behav Neurosci 107:618–626PubMedCrossRefGoogle Scholar
  44. Garavan H, Morgan RE, Mactutus CF, Levitsky DA, Booze RM, Strupp BJ (2000) Prenatal cocaine exposure impairs selective attention: evidence from serial reversal and extradimensional shift tasks. Behav Neurosci 114:725–738PubMedCrossRefGoogle Scholar
  45. Garvey LJ, Yerrakalva D, Winston A (2009) Correlations between computerized battery testing and a memory questionnaire for identification of neurocognitive impairment in HIV type 1-infected subjects on stable antiretroviral therapy. AIDS Res Hum Retroviruses 25:765–769PubMedCrossRefGoogle Scholar
  46. Gendle MH, Strawderman MS, Mactutus CF, Booze RM, Levitsky DA, Strupp BJ (2003) Impaired sustained attention and altered reactivity to errors in an animal model of prenatal cocaine exposure. Brain Res Dev Brain Res 147:85–96PubMedCrossRefGoogle Scholar
  47. Gendle MH, Strawderman MS, Mactutus CF, Booze RM, Levitsky DA, Strupp BJ (2004a) Prenatal cocaine exposure does not alter working memory in adult rats. Neurotoxicol Teratol 26:319–329PubMedCrossRefGoogle Scholar
  48. Gendle MH, White TL, Strawderman M, Mactutus CF, Booze RM, Levitsky DA, Strupp BJ (2004b) Enduring effects of prenatal cocaine exposure on selective attention and reactivity to errors: evidence from an animal model. Behav Neurosci 118:290–297PubMedCrossRefGoogle Scholar
  49. Gil R, Breux JP, Neau JP, Becq-Giraudon B (1992) Cognitive evoked potentials and HIV infection. Neurophysiol Clin 22:385–391 (French)PubMedCrossRefGoogle Scholar
  50. Goodwin GM, Pretsell DO, Chiswick A, Egan V, Brettle RP (1996) The Edinburgh cohort of HIV-positive injecting drug users at 10 years after infection: a case-control study of the evolution of dementia. AIDS 10:431–440PubMedCrossRefGoogle Scholar
  51. Griffin WC, Middaugh LD, Cook JE, Tyor WR (2004) The severe combined immunodeficient (SCID) mouse model of human immunodeficiency virus encephalitis: deficits in cognitive function. J Neurovirol 10:109–115PubMedCrossRefGoogle Scholar
  52. Hamilton DA, Driscoll I, Sutherland RJ (2002) Human place learning in a virtual Morris water task: some important constraints on the flexibility of place navigation. Behav Brain Res 129:159–170PubMedCrossRefGoogle Scholar
  53. Harker KT, Whishaw IQ (2002) Place and matching-to-place spatial learning affected by rat inbreeding (Dark-Agouti, Fischer 344) and albinism (Wistar, Sprague-Dawley) but not domestication (wild rat vs. Long-Evans, Fischer-Norway). Behav Brain Res 134:467–477PubMedCrossRefGoogle Scholar
  54. Heaton RK et al (1995) The HNRC 500—neuropsychology of HIV infection at different disease stages. HIV Neurobehavioral Research Center. J Int Neuropsychol Soc 1:231–251PubMedCrossRefGoogle Scholar
  55. Heaton RK et al (2010) HIV-associated neurocognitive disorders persist in the era of potent antiretroviral therapy: CHARTER Study. Neurology 75:2087–2096PubMedPubMedCentralCrossRefGoogle Scholar
  56. Heaton RK et al (2011) HIV-associated neurocognitive disorders before and during the era of combination antiretroviral therapy: differences in rates, nature, and predictors. J Neurovirol 17:3–16PubMedCrossRefGoogle Scholar
  57. Hill JM, Mervis RF, Avidor R, Moody TW, Brenneman DE (1993) HIV envelope protein-induced neuronal damage and retardation of behavioral development in rat neonates. Brain Res 603:222–233PubMedCrossRefGoogle Scholar
  58. Hoffman DC, Donovan H (1994) D-1 and D-2 dopamine-receptor antagonists reverse prepulse inhibition deficits in an animal model of schizophrenia. Psychopharmacology (Berl) 115:447–453CrossRefGoogle Scholar
  59. Hoffman HS, Ison JR (1980) Reflex modification in the domain of startle: I. Some empirical findings and their implications for how the nervous system processes sensory input. Psychol Rev 87:175–189PubMedCrossRefGoogle Scholar
  60. Ison JR, Hammond GR (1971) Modification of the startle reflex in the rat by changes in the auditory and visual environments. J Comp Physiol Psychol 75:435–452PubMedCrossRefGoogle Scholar
  61. Ison JR, Hoffman HS (1983) Reflex modification in the domain of startle: II. The anomalous history of a robust and ubiquitous phenomenon. Psychol Bull 94:3–17PubMedCrossRefGoogle Scholar
  62. Ison JR, McAdam DW, Hammond GR (1973) Latency and amplitude changes in the acoustic startle reflex of the rat produced by variation in auditory prestimulation. Physiol Behav 10:1035–1039PubMedCrossRefGoogle Scholar
  63. Jones CK, Shannon HE (2000) Effects of scopolamine in comparison with apomorphine and phencyclidine on prepulse inhibition in rats. Eur J Pharmacol 391:105–112PubMedCrossRefGoogle Scholar
  64. June HL, Tzeng Yang AR, Bryant JL, Jones O, Royal W 3rd (2009) Vitamin A deficiency and behavioral and motor deficits in the human immunodeficiency virus type 1 transgenic rat. J Neurovirol 15:380–389PubMedPubMedCentralCrossRefGoogle Scholar
  65. Kelly JB, Masterton B (1977) Auditory sensitivity of the albino rat. J Comp Physiol Psychol 91:930–936PubMedCrossRefGoogle Scholar
  66. Koch M (1999) The neurobiology of startle. Prog Neurobiol 59:107–128PubMedCrossRefGoogle Scholar
  67. Koutsilieri E, Sopper S, Scheller C, ter Meulen V, Riederer P (2002) Parkinsonism in HIV dementia. J Neural Transm 109:767–775PubMedCrossRefGoogle Scholar
  68. Kumar AM, Fernandez JB, Singer EJ, Commins D, Waldrop-Valverde D, Ownby RL, Kumar M (2009) Human immunodeficiency virus type 1 in the central nervous system leads to decreased dopamine in different regions of postmortem human brains. J Neurovirol 15:257–274PubMedCrossRefGoogle Scholar
  69. Kumar AM, Ownby RL, Waldrop-Valverde D, Fernandez B, Kumar M (2011) Human immunodeficiency virus infection in the CNS and decreased dopamine availability: relationship with neuropsychological performance. J Neurovirol 17:26–40PubMedCrossRefGoogle Scholar
  70. LaShomb AL, Vigorito M, Chang SL (2009) Further characterization of the spatial learning deficit in the human immunodeficiency virus-1 transgenic rat. J Neurovirol 15:14–24PubMedCrossRefGoogle Scholar
  71. Lindner MD, Schallert T (1988) Aging and atropine effects on spatial navigation in the Morris water task. Behav Neurosci 102:621–634PubMedCrossRefGoogle Scholar
  72. Lipska BK, Swerdlow NR, Geyer MA, Jaskiw GE, Braff DL, Weinberger DR (1995) Neonatal excitotoxic hippocampal damage in rats causes post pubertal changes in prepulse inhibition of startle and its disruption by apomorphine. Psychopharmacology (Berl) 122:35–43CrossRefGoogle Scholar
  73. Mactutus CF (1999) Prenatal intravenous cocaine adversely affects attentional processing in preweanling rats. Neurotoxicol Teratol 21:539–550PubMedCrossRefGoogle Scholar
  74. Mactutus CF, Booze RM (1994) Accuracy of spatial navigation: the role of platform and tank size. Soc Neurosci Abstr 20:1014Google Scholar
  75. Mansbach RS, Geyer MA, Braff DL (1988) Dopaminergic stimulation disrupts sensorimotor gating in the rat. Psychopharmacology (Berl) 94:507–514CrossRefGoogle Scholar
  76. Mayeux R, Stern Y, Tang MX, Todak G, Marder K, Sano M, Richards M, Stein Z, Ehrhardt AA, Gorman JM (1993) Mortality risks in gay men with human-immunodeficiency-virus infection and cognitive impairment. Neurology 43:176–182PubMedCrossRefGoogle Scholar
  77. McArthur JC, Hoover DR, Bacellar H, Miller EN, Cohen BA, Becker JT, Graham NMH, McArthur JH, Selnes OA, Jacobson LP, Visscher BR, Concha M, Saah A (1993) Dementia in AIDS patients: incidence and risk-factors. Neurology 43:2245–2252PubMedCrossRefGoogle Scholar
  78. McNamara RK, Skelton RW (1993) The neuropharmacological and neurochemical basis of place learning in the Morris water maze. Brain Res Brain Res Rev 18:33–49PubMedCrossRefGoogle Scholar
  79. Meade CS, Lowen SB, Maclean RR, Key MD, Lukas SE (2011) FMRI brain activation during a delay discounting task in HIV-positive adults with and without cocaine dependence. Psychiatry Res 192:167–175PubMedPubMedCentralCrossRefGoogle Scholar
  80. Moran LM, Mactutus CF, Booze RM (2009) Generality of disruption of prepulse inhibition by the dopamine agonist apomorphine [abstract]. In: College on Problems of Drug Dependence 71st annual meeting abstract book (Abstract #422), Reno/Sparks, NV, 20–24 June 2009, p 106Google Scholar
  81. Moran LM, Aksenov MY, Booze RM, Webb KM, Mactutus CF (2012) Adolescent HIV-1 transgenic rats: evidence for dopaminergic alterations in behavior and neurochemistry revealed by methamphetamine challenge. Curr HIV Res 10:415–424PubMedPubMedCentralCrossRefGoogle Scholar
  82. Moran LM, Booze RM, Webb KM, Mactutus CF (2013) Neurobehavioral alterations in HIV-1 transgenic rats: evidence for dopaminergic dysfunction. Exp Neurol 239:139–147PubMedCrossRefGoogle Scholar
  83. Morgan RE, Garavan HP, Mactutus CF, Levitsky DA, Booze RM, Strupp BJ (2002) Enduring effects of prenatal cocaine exposure on attention and reaction to errors. Behav Neurosci 116:624–633PubMedCrossRefGoogle Scholar
  84. Morris RGM (1981) Spatial localisation does not depend on the presence of local cues. Learn Motiv 12:239–260CrossRefGoogle Scholar
  85. Morris RGM (1983) An attempt to dissociate ‘spatial mapping’ and ‘working-memory’ theories of hippocampal function. In: Seifert W (ed) Molecular, cellular and behavioural neurobiology of the hippocampus. Academic, LondonGoogle Scholar
  86. Morris R (1984) Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods 11:47–60PubMedCrossRefGoogle Scholar
  87. Morris RG, Garrud P, Rawlins JN, O’Keefe J (1982) Place navigation impaired in rats with hippocampal lesions. Nature 297:681–683PubMedCrossRefGoogle Scholar
  88. Nieoullon A (2002) Dopamine and the regulation of cognition and attention. Prog Neurobiol 67:53–83PubMedCrossRefGoogle Scholar
  89. O’Keefe J, Nadel L (1978) The Hippocampus as a cognitive map. Oxford University Press, New York, NYGoogle Scholar
  90. O’Steen WK, Spencer RL, Bare DJ, McEwen BS (1995) Analysis of severe photoreceptor loss and Morris water-maze performance in aged rats. Behav Brain Res 68:151–158PubMedCrossRefGoogle Scholar
  91. Ollo C, Johnson R Jr, Grafman J (1991) Signs of cognitive change in HIV disease: an event-related brain potential study. Neurology 41:209–215PubMedCrossRefGoogle Scholar
  92. Packard MG, McGaugh JL (1992) Double dissociation of fornix and caudate nucleus lesions on acquisition of two water maze tasks: further evidence for multiple memory systems. Behav Neurosci 106:439–446PubMedCrossRefGoogle Scholar
  93. Pagano MA, Cahn PE, Garau ML, Mangone CA, Figini HA, Yorio AA, Dellepiane MC, Amores MG, Perez HM, Casiró AD (1992) Brain-stem auditory evoked potentials in human immunodeficiency virus-seropositive patients with and without acquired immunodeficiency syndrome. Arch Neurol 49:166–169PubMedCrossRefGoogle Scholar
  94. Panakhova E, Buresova O, Bures J (1984) The effect of hypothermia on the rat’s spatial memory in the water tank task. Behav Neural Biol 42:191–196PubMedCrossRefGoogle Scholar
  95. Peng RY, Mansbach RS, Braff DL, Geyer MA (1990) A D2 dopamine receptor agonist disrupts sensorimotor gating in rats: implications for dopaminergic abnormalities in schizophrenia. Neuropsychopharmacology 3:211–218PubMedGoogle Scholar
  96. Pezze MA, Dalley JW, Robbins TW (2007) Differential roles of dopamine D1 and D2 receptors in the nucleus accumbens in attentional performance on the five-choice serial reaction time task. Neuropsychopharmacology 32:273–283PubMedCrossRefGoogle Scholar
  97. Pugh CR, Johnson JD, Martin D, Rudy JW, Maier SF, Watkins LR (2000) Human immunodeficiency virus-1 coat protein gp120 impairs contextual fear conditioning: a potential role in AIDS related learning and memory impairments. Brain Res 861:8–15PubMedCrossRefGoogle Scholar
  98. Purohit V, Rapaka RS, Schnur P, Shurtleff D (2011) Potential impact of drugs of abuse on mother-to-child transmission (MTCT) of HIV in the era of highly active antiretroviral therapy (HAART). Life Sci 88:909–916PubMedCrossRefGoogle Scholar
  99. Rauch TM, Welch DI, Gallego L (1989) Hypothermia impairs performance in the Morris water maze. Physiol Behav 46:315–320PubMedCrossRefGoogle Scholar
  100. Reger M, Welsh R, Razani J, Martin DJ, Boone KB (2002) A meta-analysis of the neuropsychological sequelae of HIV infection. J Int Neuropsychol Soc 8:410–424PubMedCrossRefGoogle Scholar
  101. Rigdon GC, Viik K (1991) Prepulse inhibition as a screening test for potential antipsychotics. Drug Dev Res 23:91–99CrossRefGoogle Scholar
  102. Robbins TW (2002) The 5-choice serial reaction time task: behavioural pharmacology and functional neurochemistry. Psychopharmacology (Berl) 163:362–380CrossRefGoogle Scholar
  103. Sacktor N, McDermott MP, Marder K, Schifitto G, Selnes OA, McArthur JC, Stern Y, Albert S, Palumbo D, Kieburtz K, De Marcaida JA, Cohen B, Epstein L (2002) HIV-associated cognitive impairment before and after the advent of combination therapy. J Neurovirol 8:136–142PubMedCrossRefGoogle Scholar
  104. Schapiro S, Salas M, Vukovich K (1970) Hormonal effects on ontogeny of swimming ability in the rat: assessment of central nervous system development. Science 168:147–150PubMedCrossRefGoogle Scholar
  105. Schroeder MM, Handelsman L, Torres L, Jacobson J, Ritter W (1996) Consistency of repeated event-related potentials in clinically stable HIV-1-infected drug users. J Neuropsychiatry Clin Neurosci 8:305–310PubMedCrossRefGoogle Scholar
  106. Schwarzkopf SB, Bruno JP, Mitra T (1993) Effects of haloperidol and SCH 23390 on acoustic startle and prepulse inhibition under basal and stimulated conditions. Prog Neuropsychopharmacol Biol Psychiatry 17: 1023–1036PubMedCrossRefGoogle Scholar
  107. Seamans JK, Yang CR (2004) The principal features and mechanisms of dopamine modulation in the prefrontal cortex. Prog Neurobiol 74:1–58PubMedCrossRefGoogle Scholar
  108. Silvers JM, Aksenova MV, Aksenov MY, Mactutus CF, Booze RM (2007) Neurotoxicity of HIV-1 Tat protein: involvement of D1 dopamine receptor. Neurotoxicology 28:1184–1190PubMedPubMedCentralCrossRefGoogle Scholar
  109. Skelton RW, Ross SP, Nerad L, Livingstone SA (2006) Human spatial navigation deficits after traumatic brain injury shown in the arena maze, a virtual Morris water maze. Brain Inj 20:189–203PubMedCrossRefGoogle Scholar
  110. Sloan HL, Good M, Dunnett SB (2006) Double dissociation between hippocampal and prefrontal lesions on an operant delayed matching task and a water maze reference memory task. Behav Brain Res 171:116–126PubMedCrossRefGoogle Scholar
  111. Spear NE (1978) The processing of memories: forgetting and retention. Lawrence Erlbaum Associates, Hillsdale, NJGoogle Scholar
  112. Spear NE, Riccio DC (1994) Memory: phenomena and principles. Allyn & Bacon, Needham Heights, MAGoogle Scholar
  113. Spencer RL, O’Steen WK, McEwen BS (1995) Water maze performance of aged Sprague-Dawley rats in relation to retinal morphologic measures. Behav Brain Res 68:139–150PubMedCrossRefGoogle Scholar
  114. Stewart CA, Morris RGM (1993) The watermaze. In: Sahgal A (ed) Behavioural neuroscience, vol I, a practical approach. Oxford University Press, Oxford, pp 107–122Google Scholar
  115. Stuss DT, Levine B (2002) Adult clinical neuropsychology: lessons from studies of the frontal lobes. Annu Rev Psychol 53:401–433PubMedCrossRefGoogle Scholar
  116. Sulzer D (2011) How addictive drugs disrupt presynaptic dopamine neurotransmission. Neuron 69:628–649PubMedPubMedCentralCrossRefGoogle Scholar
  117. Sutherland RJ, Dyck RH (1984) Place navigation by rats in a swimming pool. Can J Psychol 38:322–347CrossRefGoogle Scholar
  118. Sutherland RJ, Hamilton DA (2004) Rodent spatial navigation: at the crossroads of cognition and movement. Neurosci Biobehav Rev 28:687–697PubMedCrossRefGoogle Scholar
  119. Sutherland RJ, Linggard R (1982) Being there: a novel demonstration of latent spatial learning in the rat. Behav Neural Biol 36:103–107PubMedCrossRefGoogle Scholar
  120. Sutherland RJ, Kolb B, Whishaw IQ (1982) Spatial mapping: definitive disruption by hippocampal or medial frontal cortical damage in the rat. Neurosci Lett 31:271–276PubMedCrossRefGoogle Scholar
  121. Sutherland RJ, Chew GL, Baker JC, Linggard RC (1987) Some limitations on the use of distal cues in place navigation by rats. Psychobiology 15:48–57Google Scholar
  122. Tang H, Lu D, Pan R, Qin X, Xiong H, Dong J (2009) Curcumin improves spatial memory impairment induced by human immunodeficiency virus type 1 glycoprotein 120 V3 loop peptide in rats. Life Sci 85:1–10PubMedCrossRefGoogle Scholar
  123. Tolman EC (1948) Cognitive maps in rats and men. Psychol Rev 55:189–208PubMedCrossRefGoogle Scholar
  124. Tolman EC, Honzik CH (1930) Introduction and removal of reward, and maze performance in rats. University of California publications in psychology, vol 4. University of California Press, Berkeley, CA, pp 257–275Google Scholar
  125. Tonkiss J, Shultz P, Galler JR (1992) Long-Evans and Sprague-Dawley rats differ in their spatial navigation performance during ontogeny and at maturity. Dev Psychobiol 25:567–579PubMedCrossRefGoogle Scholar
  126. UNAIDS/WHO (2010) Report on the global AIDS epidemic 2010. UNAIDS/WHO, Geneva, ISBN 9789291738717Google Scholar
  127. Varty GB, Higgins GA (1994) Differences between 3 rat strains in sensitivity to prepulse inhibition of an acoustic startle response: influence of apomorphine and phencyclidine pretreatment. J Psychopharmacol 8:148–156PubMedCrossRefGoogle Scholar
  128. Vigliano P, Boffi P, Bonassi E, Gandione M, Marotta C, Rainò E, Russo R, Rigardetto R (2000) Neurophysiologic exploration: a reliable tool in HIV-1 encephalopathy diagnosis in children. Panminerva Med 42:267–272PubMedGoogle Scholar
  129. Vigorito M, LaShomb AL, Chang SL (2007) Spatial learning and memory in HIV-1 transgenic rats. J Neuroimmune Pharmacol 2:319–328PubMedCrossRefGoogle Scholar
  130. Vijayraghavan S, Wang M, Birnbaum SG, Williams GV, Arnsten AF (2007) Inverted-U dopamine D1 receptor actions on prefrontal neurons engaged in working memory. Nat Neurosci 10:376–384PubMedCrossRefGoogle Scholar
  131. Wallace DR, Dodson S, Nath A, Booze RM (2006) Estrogen attenuates gp120- and tat1-72-induced oxidative stress and prevents loss of dopamine transporter function. Synapse 59:51–60PubMedCrossRefGoogle Scholar
  132. Wang GJ, Chang L, Volkow ND, Telang F, Logan J, Ernst T, Fowler JS (2004) Decreased brain dopaminergic transporters in HIV-associated dementia patients. Brain 127:2452–2458PubMedCrossRefGoogle Scholar
  133. Xing B, Kong H, Meng X, Wei SG, Xu M, Li SB (2010) Dopamine D1 but not D3 receptor is critical for spatial learning and related signaling in the hippocampus. Neuroscience 169:1511–1519PubMedCrossRefGoogle Scholar
  134. Zhu J, Mactutus CF, Wallace DR, Booze RM (2009) HIV-1 Tat protein-induced rapid and reversible decrease in [3H]dopamine uptake: dissociation of [3H]dopamine uptake and [3H]2beta-carbomethoxy-3-beta-(4-fluorophenyl)tropane (WIN 35,428) binding in rat striatal synaptosomes. J Pharmacol Exp Ther 329:1071–1083PubMedPubMedCentralCrossRefGoogle Scholar
  135. Zhu J, Ananthan S, Mactutus CF, Booze RM (2011) Recombinant human immunodeficiency virus-1 transactivator of transcription(1-86) allosterically modulates dopamine transporter activity. Synapse 65:1251–1254PubMedPubMedCentralCrossRefGoogle Scholar
  136. Zink WE, Anderson E, Boyle J, Hock L, Rodriguez-Sierra J, Xiong HG, Gendelman HE, Persidsky Y (2002) Impaired spatial cognition and synaptic potentiation in a murine model of human immunodeficiency virus type 1 encephalitis. J Neurosci 22:2096–2105PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Landhing M. Moran
    • 1
  • Rosemarie M. Booze
    • 1
  • Charles F. Mactutus
    • 1
    Email author
  1. 1.Behavioral Neuroscience Program, Department of PsychologyUniversity of South CarolinaColumbiaUSA

Personalised recommendations