Humanized Mice

  • Larisa Y. PoluektovaEmail author
  • Edward Makarov
Part of the Springer Protocols Handbooks book series (SPH)


Human-specific viral infections of CNS require the presence of human host cells. For modeling of HIV-1-associated neurocognitive diseases, the presence of human cells of macrophage lineage that support viral replication is necessary. This process is recognized as HIV-1 encephalitis and mirrored in immunodeficient mice by transplantation of HIV-1-infected human macrophages in deep brain nuclei. However, the development of minor cognitive/motor decline can be observed in the absence of encephalitis. These types of pathology could be imitated in chronically infected animals. The stable engraftment of human hematopoietic stem cells and development of human immune system facilitated establishment of chronic HIV-1 infection. The chapter describes both approaches to mimic human HIV-1-associated pathologies, requirements for mouse strain background, and morphologic evaluation of brain pathology.


Immunocompromised mice scid mutation Macrophages Hematopoietic stem cells HIV-1 Encephalitis Neuroinflammation Microglia Peripheral blood lymphocytes 


  1. Bauer M, Goldstein M, Christmann M, Becker H, Heylmann D, Kaina B (2011) Human monocytes are severely impaired in base and DNA double-strand break repair that renders them vulnerable to oxidative stress. Proc Natl Acad Sci USA 108: 21105–21110CrossRefPubMedPubMedCentralGoogle Scholar
  2. Berges BK, Rowan MR (2011) The utility of the new generation of humanized mice to study HIV-1 infection: transmission, prevention, pathogenesis, and treatment. Retrovirology 8:65CrossRefPubMedPubMedCentralGoogle Scholar
  3. Blunt T, Finnie NJ, Taccioli GE, Smith GC, Demengeot J, Gottlieb TM, Mizuta R, Varghese AJ, Alt FW, Jeggo PA et al (1995) Defective DNA-dependent protein kinase activity is linked to V(D)J recombination and DNA repair defects associated with the murine scid mutation. Cell 80:813–823CrossRefPubMedGoogle Scholar
  4. Bosma GC, Custer RP, Bosma MJ (1983) A severe combined immunodeficiency mutation in the mouse. Nature 301:527–530CrossRefPubMedGoogle Scholar
  5. Brehm MA, Shultz LD, Greiner DL (2010a) Humanized mouse models to study human diseases. Curr Opin Endocrinol Diabetes Obes 17:120–125CrossRefPubMedPubMedCentralGoogle Scholar
  6. Brehm MA, Bortell R, Diiorio P, Leif J, Laning J, Cuthbert A, Yang C, Herlihy M, Burzenski L, Gott B, Foreman O, Powers AC, Greiner DL, Shultz LD (2010b) Human immune system development and rejection of human islet allografts in spontaneously diabetic NOD-Rag1null IL2rgammanull Ins2Akita mice. Diabetes 59:2265–2270CrossRefPubMedPubMedCentralGoogle Scholar
  7. Brehm MA, Cuthbert A, Yang C, Miller DM, DiIorio P, Laning J, Burzenski L, Gott B, Foreman O, Kavirayani A, Herlihy M, Rossini AA, Shultz LD, Greiner DL (2010c) Parameters for establishing humanized mouse models to study human immunity: analysis of human hematopoietic stem cell engraftment in three immunodeficient strains of mice bearing the IL2r gc null mutation. Clin Immunol 135:84–98CrossRefPubMedPubMedCentralGoogle Scholar
  8. Chang H, Biswas S, Tallarico AS, Sarkis PT, Geng S, Panditrao MM, Zhu Q, Marasco WA (2012) Human B-cell ontogeny in humanized NOD/SCID gammac(null) mice generates a diverse yet auto/poly- and HIV-1-reactive antibody repertoire. Genes Immun 13:399–410CrossRefPubMedPubMedCentralGoogle Scholar
  9. Chechlacz M, Vemuri MC, Naegele JR (2001) Role of DNA-dependent protein kinase in neuronal survival. J Neurochem 78:141–154CrossRefPubMedGoogle Scholar
  10. Chun JJ, Schatz DG, Oettinger MA, Jaenisch R, Baltimore D (1991) The recombination activating gene-1 (RAG-1) transcript is present in the murine central nervous system. Cell 64:189–200CrossRefPubMedGoogle Scholar
  11. Collis SJ, DeWeese TL, Jeggo PA, Parker AR (2005) The life and death of DNA-PK. Oncogene 24:949–961CrossRefPubMedGoogle Scholar
  12. Culmsee C, Bondada S, Mattson MP (2001) Hippocampal neurons of mice deficient in DNA-dependent protein kinase exhibit increased vulnerability to DNA damage, oxidative stress and excitotoxicity. Mol Brain Res 87:257–262CrossRefPubMedGoogle Scholar
  13. Dash PK, Gorantla S, Gendelman HE, Knibbe J, Casale GP, Makarov E, Epstein AA, Gelbard HA, Boska MD, Poluektova LY (2011) Loss of neuronal integrity during progressive HIV-1 infection of humanized mice. J Neurosci 31:3148–3157CrossRefPubMedPubMedCentralGoogle Scholar
  14. de Jong YP, Rice CM, Ploss A (2010) New horizons for studying human hepatotropic infections. J Clin Invest 120:650–653CrossRefPubMedPubMedCentralGoogle Scholar
  15. Denton PW, Olesen R, Choudhary SK, Archin NM, Wahl A, Swanson MD, Chateau M, Nochi T, Krisko JF, Spagnuolo RA, Margolis DM, Garcia JV (2012) Generation of HIV latency in humanized BLT mice. J Virol 86:630–634CrossRefPubMedPubMedCentralGoogle Scholar
  16. Fais S, Lapenta C, Santini SM, Spada M, Parlato S, Logozzi M, Rizza P, Belardelli F (1999) Human immunodeficiency virus type 1 strains R5 and X4 induce different pathogenic effects in hu-PBL-SCID mice, depending on the state of activation/differentiation of human target cells at the time of primary infection. J Virol 73:6453–6459PubMedPubMedCentralGoogle Scholar
  17. Furukawa H, Yamashita A, del Rey A, Besedovsky H (2004) c-Fos expression in the rat cerebral cortex during systemic GvH reaction. Neuroimmunomodulation 11:425–433CrossRefPubMedGoogle Scholar
  18. Goldman JP, Blundell MP, Lopes L, Kinnon C, Di Santo JP, Thrasher AJ (1998) Enhanced human cell engraftment in mice deficient in RAG2 and the common cytokine receptor gamma chain. Br J Haematol 103:335–342CrossRefPubMedGoogle Scholar
  19. Gorantla S, Che M, Gendelman HE (2005a) Isolation, propagation, and HIV-1 infection of monocyte-derived macrophages and recovery of virus from brain and cerebrospinal fluid. Methods Mol Biol 304:35–48PubMedGoogle Scholar
  20. Gorantla S, Santos K, Meyer V, Dewhurst S, Bowers WJ, Federoff HJ, Gendelman HE, Poluektova L (2005b) Human dendritic cells transduced with herpes simplex virus amplicons encoding human immunodeficiency virus type 1 (HIV-1) gp120 elicit adaptive immune responses from human cells engrafted into NOD/SCID mice and confer partial protection against HIV-1 challenge. J Virol 79:2124–2132CrossRefPubMedPubMedCentralGoogle Scholar
  21. Gorantla S, Sneller H, Walters L, Sharp JG, Pirruccello SJ, West JT, Wood C, Dewhurst S, Gendelman HE, Poluektova L (2007) Human immunodeficiency virus type 1 pathobiology studied in humanized BALB/c-Rag2-/-gammac-/- mice. J Virol 81:2700–2712CrossRefPubMedGoogle Scholar
  22. Gorantla S, Makarov E, Roy D, Finke-Dwyer J, Murrin LC, Gendelman HE, Poluektova L (2010a) Immunoregulation of a CB2 receptor agonist in a murine model of neuroAIDS. J Neuroimmune Pharmacol 5:456–468CrossRefPubMedPubMedCentralGoogle Scholar
  23. Gorantla S, Makarov E, Finke-Dwyer J, Castanedo A, Holguin A, Gebhart CL, Gendelman HE, Poluektova L (2010b) Links between progressive HIV-1 infection of humanized mice and viral neuropathogenesis. Am J Pathol 177:2938–2949CrossRefPubMedPubMedCentralGoogle Scholar
  24. Gorantla S, Makarov E, Finke-Dwyer J, Gebhart CL, Domm W, Dewhurst S, Gendelman HE, Poluektova LY (2010c) CD8+ cell depletion accelerates HIV-1 immunopathology in humanized mice. J Immunol 184:7082–7091CrossRefPubMedPubMedCentralGoogle Scholar
  25. Gorantla S, Poluektova L, Gendelman HE (2012a) Rodent models for HIV-associated neurocognitive disorders. Trends Neurosci 35:197–208CrossRefPubMedPubMedCentralGoogle Scholar
  26. Gorantla S, Gendelman HE, Poluektova LY (2012b) Can humanized mice reflect the complex pathobiology of HIV-associated neurocognitive disorders? J Neuroimmune Pharmacol 7:352–362CrossRefPubMedPubMedCentralGoogle Scholar
  27. Greiner DL, Shultz LD, Yates J, Appel MC, Perdrizet G, Hesselton RM, Schweitzer I, Beamer WG, Shultz KL, Pelsue SC et al (1995) Improved engraftment of human spleen cells in NOD/LtSz-scid/scid mice as compared with C.B-17-scid/scid mice. Am J Pathol 146:888–902PubMedPubMedCentralGoogle Scholar
  28. Hesselton RM, Greiner DL, Mordes JP, Rajan TV, Sullivan JL, Shultz LD (1995) High levels of human peripheral blood mononuclear cell engraftment and enhanced susceptibility to human immunodeficiency virus type 1 infection in NOD/LtSz-scid/scid mice. J Infect Dis 172:974–982CrossRefPubMedGoogle Scholar
  29. Hickey WF, Kimura H (1987) Graft-vs.-host disease elicits expression of class I and class II histocompatibility antigens and the presence of scattered T lymphocytes in rat central nervous system. Proc Natl Acad Sci USA 84:2082–2086CrossRefPubMedPubMedCentralGoogle Scholar
  30. Kajiwara K, Hirozane A, Fukumoto T, Orita T, Nishizaki T, Kamiryo T, Ito H (1991) Major histocompatibility complex expression in brain of rats with graft-versus-host disease. J Neuroimmunol 32:191–198CrossRefPubMedGoogle Scholar
  31. Kambe N, Hiramatsu H, Shimonaka M, Fujino H, Nishikomori R, Heike T, Ito M, Kobayashi K, Ueyama Y, Matsuyoshi N, Miyachi Y, Nakahata T (2004) Development of both human connective tissue-type and mucosal-type mast cells in mice from hematopoietic stem cells with identical distribution pattern to human body. Blood 103:860–867CrossRefPubMedGoogle Scholar
  32. Koyanagi Y, Tanaka Y, Tanaka R, Misawa N, Kawano Y, Tanaka T, Miyasaka M, Ito M, Ueyama Y, Yamamoto N (1997) High levels of viremia in hu-PBL-NOD-scid mice with HIV-1 infection. Leukemia 11(suppl 3): 109–112PubMedGoogle Scholar
  33. Lepus CM, Gibson TF, Gerber SA, Kawikova I, Szczepanik M, Hossain J, Ablamunits V, Kirkiles-Smith N, Herold KC, Donis RO, Bothwell AL, Pober JS, Harding MJ (2009) Comparison of human fetal liver, umbilical cord blood, and adult blood hematopoietic stem cell engraftment in NOD-scid/gammac-/-, Balb/c-Rag1-/-gammac-/-, and C.B-17-scid/bg immunodeficient mice. Hum Immunol 70:790–802CrossRefPubMedPubMedCentralGoogle Scholar
  34. Libby SJ, Brehm MA, Greiner DL, Shultz LD, McClelland M, Smith KD, Cookson BT, Karlinsey JE, Kinkel TL, Porwollik S, Canals R, Cummings LA, Fang FC (2010) Humanized nonobese diabetic-scid IL2rgammanull mice are susceptible to lethal Salmonella Typhi infection. Proc Natl Acad Sci USA 107:15589–15594CrossRefPubMedPubMedCentralGoogle Scholar
  35. McCune JM, Namikawa R, Kaneshima H, Shultz LD, Lieberman M, Weissman IL (1988) The SCID-hu mouse: murine model for the analysis of human hematolymphoid differentiation and function. Science 241: 1632–1639CrossRefPubMedGoogle Scholar
  36. McDermott SP, Eppert K, Lechman ER, Doedens M, Dick JE (2010) Comparison of human cord blood engraftment between immunocompromised mouse strains. Blood 116:193–200CrossRefPubMedGoogle Scholar
  37. Mosier DE, Gulizia RJ, Baird SM, Wilson DB (1988) Transfer of a functional human immune system to mice with severe combined immunodeficiency. Nature 335:256–259CrossRefPubMedGoogle Scholar
  38. Namikawa R, Kaneshima H, Lieberman M, Weissman IL, McCune JM (1988) Infection of the SCID-hu mouse by HIV-1. Science 242:1684–1686CrossRefPubMedGoogle Scholar
  39. Neema M, Navarro-Quiroga I, Chechlacz M, Gilliams-Francis K, Liu J, Lamonica K, Lin SL, Naegele JR (2005) DNA damage and nonhomologous end joining in excitotoxicity: neuroprotective role of DNA-PKcs in kainic acid-induced seizures. Hippocampus 15:1057–1071CrossRefPubMedGoogle Scholar
  40. Oettinger MA (1996) Cutting apart V(D)J recombination. Curr Opin Genet Dev 6:141–145CrossRefPubMedGoogle Scholar
  41. Onoe T, Kalscheuer H, Danzl N, Chittenden M, Zhao G, Yang YG, Sykes M (2011) Human natural regulatory T cell development, suppressive function, and postthymic maturation in a humanized mouse model. J Immunol 187:3895–3903CrossRefPubMedPubMedCentralGoogle Scholar
  42. Padovan CS, Gerbitz A, Sostak P, Holler E, Ferrara JL, Bise K, Straube A (2001) Cerebral involvement in graft-versus-host disease after murine bone marrow transplantation. Neurology 56:1106–1108CrossRefPubMedGoogle Scholar
  43. Persidsky Y, Gendelman HE (2003) Mononuclear phagocyte immunity and the neuropathogenesis of HIV-1 infection. J Leukoc Biol 74:691–701CrossRefPubMedGoogle Scholar
  44. Persidsky Y, Limoges J, McComb R, Bock P, Baldwin T, Tyor W, Patil A, Nottet HSLM, Epstein L, Gelbard H, Flanagan E, Reinhard J, Pirruccello SJ, Gendelman HE (1996) Human immunodeficiency virus encephalitis in SCID mice. Am J Pathol 149:1027–1053PubMedPubMedCentralGoogle Scholar
  45. Pino S, Brehm MA, Covassin-Barberis L, King M, Gott B, Chase TH, Wagner J, Burzenski L, Foreman O, Greiner DL, Shultz LD (2010) Development of novel major histocompatibility complex class I and class II-deficient NOD-SCID IL2R gamma chain knockout mice for modeling human xenogeneic graft-versus-host disease. Methods Mol Biol 602:105–117CrossRefPubMedPubMedCentralGoogle Scholar
  46. Poluektova LY (2012) Murine models for neuroAIDS. In: Gendelman HE, Grant I, Everall IP, Fox HS, Gelbard HA, Lipton SA, Swindells S (eds) The neurology of AIDS, 3rd edn. Oxford University Press, New York, pp 414–431Google Scholar
  47. Poluektova LY, Munn DH, Persidsky Y, Gendelman HE (2002) Generation of cytotoxic T cells against virus-infected human brain macrophages in a murine model of HIV-1 encephalitis. J Immunol 168:3941–3949CrossRefPubMedGoogle Scholar
  48. Poluektova LY, Gorantla S, Gendelman HE (2004) Studies of adaptive immunity in a murine model of HIV-1 encephalitis. In: Gendelman HG, Grant I, Lipton SA, Swindells S (eds) Neurology of AIDS, 2nd edn. Oxford University Press, NewYork, pp 297–309Google Scholar
  49. Robinet E, Baumert TF (2011) A first step towards a mouse model for hepatitis C virus infection containing a human immune system. J Hepatol 55:718–720CrossRefPubMedGoogle Scholar
  50. Sato K, Koyanagi Y (2011) The mouse is out of the bag: insights and perspectives on HIV-1-infected humanized mouse models. Exp Biol Med 236:977–985CrossRefGoogle Scholar
  51. Sauer M, Zeidler C, Meissner B, Rehe K, Hanke A, Welte K, Lohse P, Sykora KW (2007) Substitution of cyclophosphamide and busulfan by fludarabine, treosulfan and melphalan in a preparative regimen for children and adolescents with Shwachman-Diamond syndrome. Bone Marrow Transplant 39:143–147CrossRefPubMedGoogle Scholar
  52. Schroeder K et al (2011) Report from the EPAA workshop: in vitro ADME in safety testing used by EPAA industry sectors. Toxicol In Vitro 25:589–604CrossRefPubMedGoogle Scholar
  53. Serreze DV, Leiter EH, Hanson MS, Christianson SW, Shultz LD, Hesselton RM, Greiner DL (1995) Emv30null NOD-scid mice. An improved host for adoptive transfer of autoimmune diabetes and growth of human lymphohematopoietic cells. Diabetes 44:1392–1398CrossRefPubMedGoogle Scholar
  54. Shibata S, Asano T, Noguchi A, Naito M, Ogura A, Doi K (1998) Peritoneal macrophages play an important role in eliminating human cells from severe combined immunodeficient mice transplanted with human peripheral blood lymphocytes. Immunology 93:524–532CrossRefPubMedPubMedCentralGoogle Scholar
  55. Shultz LD, Schweitzer PA, Christianson SW, Gott B, Schweitzer IB, Tennent B, McKenna S, Mobraaten L, Rajan TV, Greiner DL et al (1995) Multiple defects in innate and adaptive immunologic function in NOD/LtSz-scid mice. J Immunol 154:180–191PubMedGoogle Scholar
  56. Sjoo F, Hassan Z, Abedi-Valugerdi M, Griskevicius L, Nilsson C, Remberger M, Aschan J, Concha H, Gaughan U, Hassan M (2006) Myeloablative and immunosuppressive properties of treosulfan in mice. Exp Hematol 34:115–121CrossRefPubMedGoogle Scholar
  57. Sostak P, Reich P, Padovan CS, Gerbitz A, Holler E, Straube A (2004) Cerebral endothelial expression of adhesion molecules in mice with chronic graft-versus-host disease. Stroke 35:1158–1163CrossRefPubMedGoogle Scholar
  58. Sostak P, Padovan CS, Eigenbrod S, Roeber S, Segerer S, Schankin C, Siegert S, Saam T, Theil D, Kolb HJ, Kretzschmar H, Straube A (2010) Cerebral angiitis in four patients with chronic GVHD. Bone Marrow Transplant 45:1181–1188CrossRefPubMedGoogle Scholar
  59. Tanaka S, Saito Y, Kunisawa J, Kurashima Y, Wake T, Suzuki N, Shultz LD, Kiyono H, Ishikawa F (2012) Development of mature and functional human myeloid subsets in hematopoietic stem cell-engrafted NOD/SCID/IL2rgammaKO mice. J Immunol 188: 6145–6155CrossRefPubMedPubMedCentralGoogle Scholar
  60. Tournoy KG, Depraetere S, Pauwels RA, Leroux-Roels GG (2000) Mouse strain and conditioning regimen determine survival and function of human leucocytes in immunodeficient mice. Clin Exp Immunol 119:231–239CrossRefPubMedPubMedCentralGoogle Scholar
  61. Traggiai E, Chicha L, Mazzucchelli L, Bronz L, Piffaretti JC, Lanzavecchia A, Manz MG (2004) Development of a human adaptive immune system in cord blood cell-transplanted mice. Science 304:104–107CrossRefPubMedGoogle Scholar
  62. Van Duyne R, Pedati C, Guendel I, Carpio L, Kehn-Hall K, Saifuddin M, Kashanchi F (2009) The utilization of humanized mouse models for the study of human retroviral infections. Retrovirology 6:76CrossRefPubMedPubMedCentralGoogle Scholar
  63. Vemuri MC, Schiller E, Naegele JR (2001) Elevated DNA double strand breaks and apoptosis in the CNS of scid mutant mice. Cell Death Differ 8:245–255CrossRefPubMedGoogle Scholar
  64. Washburn ML, Bility MT, Zhang L, Kovalev GI, Buntzman A, Frelinger JA, Barry W, Ploss A, Rice CM, Su L (2011) A humanized mouse model to study hepatitis C virus infection, immune response, and liver disease. Gastroenterology 140:1334–1344CrossRefPubMedPubMedCentralGoogle Scholar
  65. Zhang L, Meissner E, Chen J, Su L (2010) Current humanized mouse models for studying human immunology and HIV-1 immuno-pathogenesis. Sci China Life Sci 53:195–203CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Pharmacology and Experimental NeuroscienceUniversity of Nebraska Medical CenterOmahaUSA

Personalised recommendations