Skip to main content

Humanized Mice

  • Protocol
  • First Online:
Current Laboratory Methods in Neuroscience Research

Part of the book series: Springer Protocols Handbooks ((SPH))

  • 5284 Accesses

Abstract

Human-specific viral infections of CNS require the presence of human host cells. For modeling of HIV-1-associated neurocognitive diseases, the presence of human cells of macrophage lineage that support viral replication is necessary. This process is recognized as HIV-1 encephalitis and mirrored in immunodeficient mice by transplantation of HIV-1-infected human macrophages in deep brain nuclei. However, the development of minor cognitive/motor decline can be observed in the absence of encephalitis. These types of pathology could be imitated in chronically infected animals. The stable engraftment of human hematopoietic stem cells and development of human immune system facilitated establishment of chronic HIV-1 infection. The chapter describes both approaches to mimic human HIV-1-associated pathologies, requirements for mouse strain background, and morphologic evaluation of brain pathology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bauer M, Goldstein M, Christmann M, Becker H, Heylmann D, Kaina B (2011) Human monocytes are severely impaired in base and DNA double-strand break repair that renders them vulnerable to oxidative stress. Proc Natl Acad Sci USA 108: 21105–21110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berges BK, Rowan MR (2011) The utility of the new generation of humanized mice to study HIV-1 infection: transmission, prevention, pathogenesis, and treatment. Retrovirology 8:65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blunt T, Finnie NJ, Taccioli GE, Smith GC, Demengeot J, Gottlieb TM, Mizuta R, Varghese AJ, Alt FW, Jeggo PA et al (1995) Defective DNA-dependent protein kinase activity is linked to V(D)J recombination and DNA repair defects associated with the murine scid mutation. Cell 80:813–823

    Article  CAS  PubMed  Google Scholar 

  • Bosma GC, Custer RP, Bosma MJ (1983) A severe combined immunodeficiency mutation in the mouse. Nature 301:527–530

    Article  CAS  PubMed  Google Scholar 

  • Brehm MA, Shultz LD, Greiner DL (2010a) Humanized mouse models to study human diseases. Curr Opin Endocrinol Diabetes Obes 17:120–125

    Article  PubMed  PubMed Central  Google Scholar 

  • Brehm MA, Bortell R, Diiorio P, Leif J, Laning J, Cuthbert A, Yang C, Herlihy M, Burzenski L, Gott B, Foreman O, Powers AC, Greiner DL, Shultz LD (2010b) Human immune system development and rejection of human islet allografts in spontaneously diabetic NOD-Rag1null IL2rgammanull Ins2Akita mice. Diabetes 59:2265–2270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brehm MA, Cuthbert A, Yang C, Miller DM, DiIorio P, Laning J, Burzenski L, Gott B, Foreman O, Kavirayani A, Herlihy M, Rossini AA, Shultz LD, Greiner DL (2010c) Parameters for establishing humanized mouse models to study human immunity: analysis of human hematopoietic stem cell engraftment in three immunodeficient strains of mice bearing the IL2r gc null mutation. Clin Immunol 135:84–98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang H, Biswas S, Tallarico AS, Sarkis PT, Geng S, Panditrao MM, Zhu Q, Marasco WA (2012) Human B-cell ontogeny in humanized NOD/SCID gammac(null) mice generates a diverse yet auto/poly- and HIV-1-reactive antibody repertoire. Genes Immun 13:399–410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chechlacz M, Vemuri MC, Naegele JR (2001) Role of DNA-dependent protein kinase in neuronal survival. J Neurochem 78:141–154

    Article  CAS  PubMed  Google Scholar 

  • Chun JJ, Schatz DG, Oettinger MA, Jaenisch R, Baltimore D (1991) The recombination activating gene-1 (RAG-1) transcript is present in the murine central nervous system. Cell 64:189–200

    Article  CAS  PubMed  Google Scholar 

  • Collis SJ, DeWeese TL, Jeggo PA, Parker AR (2005) The life and death of DNA-PK. Oncogene 24:949–961

    Article  CAS  PubMed  Google Scholar 

  • Culmsee C, Bondada S, Mattson MP (2001) Hippocampal neurons of mice deficient in DNA-dependent protein kinase exhibit increased vulnerability to DNA damage, oxidative stress and excitotoxicity. Mol Brain Res 87:257–262

    Article  CAS  PubMed  Google Scholar 

  • Dash PK, Gorantla S, Gendelman HE, Knibbe J, Casale GP, Makarov E, Epstein AA, Gelbard HA, Boska MD, Poluektova LY (2011) Loss of neuronal integrity during progressive HIV-1 infection of humanized mice. J Neurosci 31:3148–3157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Jong YP, Rice CM, Ploss A (2010) New horizons for studying human hepatotropic infections. J Clin Invest 120:650–653

    Article  PubMed  PubMed Central  Google Scholar 

  • Denton PW, Olesen R, Choudhary SK, Archin NM, Wahl A, Swanson MD, Chateau M, Nochi T, Krisko JF, Spagnuolo RA, Margolis DM, Garcia JV (2012) Generation of HIV latency in humanized BLT mice. J Virol 86:630–634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fais S, Lapenta C, Santini SM, Spada M, Parlato S, Logozzi M, Rizza P, Belardelli F (1999) Human immunodeficiency virus type 1 strains R5 and X4 induce different pathogenic effects in hu-PBL-SCID mice, depending on the state of activation/differentiation of human target cells at the time of primary infection. J Virol 73:6453–6459

    CAS  PubMed  PubMed Central  Google Scholar 

  • Furukawa H, Yamashita A, del Rey A, Besedovsky H (2004) c-Fos expression in the rat cerebral cortex during systemic GvH reaction. Neuroimmunomodulation 11:425–433

    Article  CAS  PubMed  Google Scholar 

  • Goldman JP, Blundell MP, Lopes L, Kinnon C, Di Santo JP, Thrasher AJ (1998) Enhanced human cell engraftment in mice deficient in RAG2 and the common cytokine receptor gamma chain. Br J Haematol 103:335–342

    Article  CAS  PubMed  Google Scholar 

  • Gorantla S, Che M, Gendelman HE (2005a) Isolation, propagation, and HIV-1 infection of monocyte-derived macrophages and recovery of virus from brain and cerebrospinal fluid. Methods Mol Biol 304:35–48

    PubMed  Google Scholar 

  • Gorantla S, Santos K, Meyer V, Dewhurst S, Bowers WJ, Federoff HJ, Gendelman HE, Poluektova L (2005b) Human dendritic cells transduced with herpes simplex virus amplicons encoding human immunodeficiency virus type 1 (HIV-1) gp120 elicit adaptive immune responses from human cells engrafted into NOD/SCID mice and confer partial protection against HIV-1 challenge. J Virol 79:2124–2132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gorantla S, Sneller H, Walters L, Sharp JG, Pirruccello SJ, West JT, Wood C, Dewhurst S, Gendelman HE, Poluektova L (2007) Human immunodeficiency virus type 1 pathobiology studied in humanized BALB/c-Rag2-/-gammac-/- mice. J Virol 81:2700–2712

    Article  CAS  PubMed  Google Scholar 

  • Gorantla S, Makarov E, Roy D, Finke-Dwyer J, Murrin LC, Gendelman HE, Poluektova L (2010a) Immunoregulation of a CB2 receptor agonist in a murine model of neuroAIDS. J Neuroimmune Pharmacol 5:456–468

    Article  PubMed  PubMed Central  Google Scholar 

  • Gorantla S, Makarov E, Finke-Dwyer J, Castanedo A, Holguin A, Gebhart CL, Gendelman HE, Poluektova L (2010b) Links between progressive HIV-1 infection of humanized mice and viral neuropathogenesis. Am J Pathol 177:2938–2949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gorantla S, Makarov E, Finke-Dwyer J, Gebhart CL, Domm W, Dewhurst S, Gendelman HE, Poluektova LY (2010c) CD8+ cell depletion accelerates HIV-1 immunopathology in humanized mice. J Immunol 184:7082–7091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gorantla S, Poluektova L, Gendelman HE (2012a) Rodent models for HIV-associated neurocognitive disorders. Trends Neurosci 35:197–208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gorantla S, Gendelman HE, Poluektova LY (2012b) Can humanized mice reflect the complex pathobiology of HIV-associated neurocognitive disorders? J Neuroimmune Pharmacol 7:352–362

    Article  PubMed  PubMed Central  Google Scholar 

  • Greiner DL, Shultz LD, Yates J, Appel MC, Perdrizet G, Hesselton RM, Schweitzer I, Beamer WG, Shultz KL, Pelsue SC et al (1995) Improved engraftment of human spleen cells in NOD/LtSz-scid/scid mice as compared with C.B-17-scid/scid mice. Am J Pathol 146:888–902

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hesselton RM, Greiner DL, Mordes JP, Rajan TV, Sullivan JL, Shultz LD (1995) High levels of human peripheral blood mononuclear cell engraftment and enhanced susceptibility to human immunodeficiency virus type 1 infection in NOD/LtSz-scid/scid mice. J Infect Dis 172:974–982

    Article  CAS  PubMed  Google Scholar 

  • Hickey WF, Kimura H (1987) Graft-vs.-host disease elicits expression of class I and class II histocompatibility antigens and the presence of scattered T lymphocytes in rat central nervous system. Proc Natl Acad Sci USA 84:2082–2086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kajiwara K, Hirozane A, Fukumoto T, Orita T, Nishizaki T, Kamiryo T, Ito H (1991) Major histocompatibility complex expression in brain of rats with graft-versus-host disease. J Neuroimmunol 32:191–198

    Article  CAS  PubMed  Google Scholar 

  • Kambe N, Hiramatsu H, Shimonaka M, Fujino H, Nishikomori R, Heike T, Ito M, Kobayashi K, Ueyama Y, Matsuyoshi N, Miyachi Y, Nakahata T (2004) Development of both human connective tissue-type and mucosal-type mast cells in mice from hematopoietic stem cells with identical distribution pattern to human body. Blood 103:860–867

    Article  CAS  PubMed  Google Scholar 

  • Koyanagi Y, Tanaka Y, Tanaka R, Misawa N, Kawano Y, Tanaka T, Miyasaka M, Ito M, Ueyama Y, Yamamoto N (1997) High levels of viremia in hu-PBL-NOD-scid mice with HIV-1 infection. Leukemia 11(suppl 3): 109–112

    PubMed  Google Scholar 

  • Lepus CM, Gibson TF, Gerber SA, Kawikova I, Szczepanik M, Hossain J, Ablamunits V, Kirkiles-Smith N, Herold KC, Donis RO, Bothwell AL, Pober JS, Harding MJ (2009) Comparison of human fetal liver, umbilical cord blood, and adult blood hematopoietic stem cell engraftment in NOD-scid/gammac-/-, Balb/c-Rag1-/-gammac-/-, and C.B-17-scid/bg immunodeficient mice. Hum Immunol 70:790–802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Libby SJ, Brehm MA, Greiner DL, Shultz LD, McClelland M, Smith KD, Cookson BT, Karlinsey JE, Kinkel TL, Porwollik S, Canals R, Cummings LA, Fang FC (2010) Humanized nonobese diabetic-scid IL2rgammanull mice are susceptible to lethal Salmonella Typhi infection. Proc Natl Acad Sci USA 107:15589–15594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCune JM, Namikawa R, Kaneshima H, Shultz LD, Lieberman M, Weissman IL (1988) The SCID-hu mouse: murine model for the analysis of human hematolymphoid differentiation and function. Science 241: 1632–1639

    Article  CAS  PubMed  Google Scholar 

  • McDermott SP, Eppert K, Lechman ER, Doedens M, Dick JE (2010) Comparison of human cord blood engraftment between immunocompromised mouse strains. Blood 116:193–200

    Article  CAS  PubMed  Google Scholar 

  • Mosier DE, Gulizia RJ, Baird SM, Wilson DB (1988) Transfer of a functional human immune system to mice with severe combined immunodeficiency. Nature 335:256–259

    Article  CAS  PubMed  Google Scholar 

  • Namikawa R, Kaneshima H, Lieberman M, Weissman IL, McCune JM (1988) Infection of the SCID-hu mouse by HIV-1. Science 242:1684–1686

    Article  CAS  PubMed  Google Scholar 

  • Neema M, Navarro-Quiroga I, Chechlacz M, Gilliams-Francis K, Liu J, Lamonica K, Lin SL, Naegele JR (2005) DNA damage and nonhomologous end joining in excitotoxicity: neuroprotective role of DNA-PKcs in kainic acid-induced seizures. Hippocampus 15:1057–1071

    Article  CAS  PubMed  Google Scholar 

  • Oettinger MA (1996) Cutting apart V(D)J recombination. Curr Opin Genet Dev 6:141–145

    Article  CAS  PubMed  Google Scholar 

  • Onoe T, Kalscheuer H, Danzl N, Chittenden M, Zhao G, Yang YG, Sykes M (2011) Human natural regulatory T cell development, suppressive function, and postthymic maturation in a humanized mouse model. J Immunol 187:3895–3903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Padovan CS, Gerbitz A, Sostak P, Holler E, Ferrara JL, Bise K, Straube A (2001) Cerebral involvement in graft-versus-host disease after murine bone marrow transplantation. Neurology 56:1106–1108

    Article  CAS  PubMed  Google Scholar 

  • Persidsky Y, Gendelman HE (2003) Mononuclear phagocyte immunity and the neuropathogenesis of HIV-1 infection. J Leukoc Biol 74:691–701

    Article  CAS  PubMed  Google Scholar 

  • Persidsky Y, Limoges J, McComb R, Bock P, Baldwin T, Tyor W, Patil A, Nottet HSLM, Epstein L, Gelbard H, Flanagan E, Reinhard J, Pirruccello SJ, Gendelman HE (1996) Human immunodeficiency virus encephalitis in SCID mice. Am J Pathol 149:1027–1053

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pino S, Brehm MA, Covassin-Barberis L, King M, Gott B, Chase TH, Wagner J, Burzenski L, Foreman O, Greiner DL, Shultz LD (2010) Development of novel major histocompatibility complex class I and class II-deficient NOD-SCID IL2R gamma chain knockout mice for modeling human xenogeneic graft-versus-host disease. Methods Mol Biol 602:105–117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poluektova LY (2012) Murine models for neuroAIDS. In: Gendelman HE, Grant I, Everall IP, Fox HS, Gelbard HA, Lipton SA, Swindells S (eds) The neurology of AIDS, 3rd edn. Oxford University Press, New York, pp 414–431

    Google Scholar 

  • Poluektova LY, Munn DH, Persidsky Y, Gendelman HE (2002) Generation of cytotoxic T cells against virus-infected human brain macrophages in a murine model of HIV-1 encephalitis. J Immunol 168:3941–3949

    Article  CAS  PubMed  Google Scholar 

  • Poluektova LY, Gorantla S, Gendelman HE (2004) Studies of adaptive immunity in a murine model of HIV-1 encephalitis. In: Gendelman HG, Grant I, Lipton SA, Swindells S (eds) Neurology of AIDS, 2nd edn. Oxford University Press, NewYork, pp 297–309

    Google Scholar 

  • Robinet E, Baumert TF (2011) A first step towards a mouse model for hepatitis C virus infection containing a human immune system. J Hepatol 55:718–720

    Article  PubMed  Google Scholar 

  • Sato K, Koyanagi Y (2011) The mouse is out of the bag: insights and perspectives on HIV-1-infected humanized mouse models. Exp Biol Med 236:977–985

    Article  CAS  Google Scholar 

  • Sauer M, Zeidler C, Meissner B, Rehe K, Hanke A, Welte K, Lohse P, Sykora KW (2007) Substitution of cyclophosphamide and busulfan by fludarabine, treosulfan and melphalan in a preparative regimen for children and adolescents with Shwachman-Diamond syndrome. Bone Marrow Transplant 39:143–147

    Article  CAS  PubMed  Google Scholar 

  • Schroeder K et al (2011) Report from the EPAA workshop: in vitro ADME in safety testing used by EPAA industry sectors. Toxicol In Vitro 25:589–604

    Article  CAS  PubMed  Google Scholar 

  • Serreze DV, Leiter EH, Hanson MS, Christianson SW, Shultz LD, Hesselton RM, Greiner DL (1995) Emv30null NOD-scid mice. An improved host for adoptive transfer of autoimmune diabetes and growth of human lymphohematopoietic cells. Diabetes 44:1392–1398

    Article  CAS  PubMed  Google Scholar 

  • Shibata S, Asano T, Noguchi A, Naito M, Ogura A, Doi K (1998) Peritoneal macrophages play an important role in eliminating human cells from severe combined immunodeficient mice transplanted with human peripheral blood lymphocytes. Immunology 93:524–532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shultz LD, Schweitzer PA, Christianson SW, Gott B, Schweitzer IB, Tennent B, McKenna S, Mobraaten L, Rajan TV, Greiner DL et al (1995) Multiple defects in innate and adaptive immunologic function in NOD/LtSz-scid mice. J Immunol 154:180–191

    CAS  PubMed  Google Scholar 

  • Sjoo F, Hassan Z, Abedi-Valugerdi M, Griskevicius L, Nilsson C, Remberger M, Aschan J, Concha H, Gaughan U, Hassan M (2006) Myeloablative and immunosuppressive properties of treosulfan in mice. Exp Hematol 34:115–121

    Article  PubMed  Google Scholar 

  • Sostak P, Reich P, Padovan CS, Gerbitz A, Holler E, Straube A (2004) Cerebral endothelial expression of adhesion molecules in mice with chronic graft-versus-host disease. Stroke 35:1158–1163

    Article  CAS  PubMed  Google Scholar 

  • Sostak P, Padovan CS, Eigenbrod S, Roeber S, Segerer S, Schankin C, Siegert S, Saam T, Theil D, Kolb HJ, Kretzschmar H, Straube A (2010) Cerebral angiitis in four patients with chronic GVHD. Bone Marrow Transplant 45:1181–1188

    Article  CAS  PubMed  Google Scholar 

  • Tanaka S, Saito Y, Kunisawa J, Kurashima Y, Wake T, Suzuki N, Shultz LD, Kiyono H, Ishikawa F (2012) Development of mature and functional human myeloid subsets in hematopoietic stem cell-engrafted NOD/SCID/IL2rgammaKO mice. J Immunol 188: 6145–6155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tournoy KG, Depraetere S, Pauwels RA, Leroux-Roels GG (2000) Mouse strain and conditioning regimen determine survival and function of human leucocytes in immunodeficient mice. Clin Exp Immunol 119:231–239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Traggiai E, Chicha L, Mazzucchelli L, Bronz L, Piffaretti JC, Lanzavecchia A, Manz MG (2004) Development of a human adaptive immune system in cord blood cell-transplanted mice. Science 304:104–107

    Article  CAS  PubMed  Google Scholar 

  • Van Duyne R, Pedati C, Guendel I, Carpio L, Kehn-Hall K, Saifuddin M, Kashanchi F (2009) The utilization of humanized mouse models for the study of human retroviral infections. Retrovirology 6:76

    Article  PubMed  PubMed Central  Google Scholar 

  • Vemuri MC, Schiller E, Naegele JR (2001) Elevated DNA double strand breaks and apoptosis in the CNS of scid mutant mice. Cell Death Differ 8:245–255

    Article  CAS  PubMed  Google Scholar 

  • Washburn ML, Bility MT, Zhang L, Kovalev GI, Buntzman A, Frelinger JA, Barry W, Ploss A, Rice CM, Su L (2011) A humanized mouse model to study hepatitis C virus infection, immune response, and liver disease. Gastroenterology 140:1334–1344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Meissner E, Chen J, Su L (2010) Current humanized mouse models for studying human immunology and HIV-1 immuno-pathogenesis. Sci China Life Sci 53:195–203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Larisa Y. Poluektova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Poluektova, L.Y., Makarov, E. (2014). Humanized Mice. In: Xiong, H., Gendelman, H.E. (eds) Current Laboratory Methods in Neuroscience Research. Springer Protocols Handbooks. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8794-4_33

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8794-4_33

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8793-7

  • Online ISBN: 978-1-4614-8794-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics