Motor Function in Rodent Models of Neurodegenerative Disorders

  • Jessica A. Hutter Saunders
  • Max V. Kuenstling
  • Robert A. Weir
  • R. Lee Mosley
  • Howard E. GendelmanEmail author
Part of the Springer Protocols Handbooks book series (SPH)


Motor dysfunction and behavior abnormalities are often present in neurological diseases and disorders. Rodent models of neurological diseases may display motor dysfunctions or behavior and cognitive deficits similar to human disease, but these are often difficult to measure and interpret. Nevertheless, tests of motor function and behavior are important tools for characterizing mouse models of diseases and for measuring motor function and cognitive deficits after treatment. In this chapter we will describe some of the most commonly-used tests of motor dysfunction, behavior, and cognition.


Behavior Motor dysfunction Rotarod Open field Morris water maze Balance beam Paw prints Novel object recognition 


  1. Bartolomucci A, Palanza P, Sacerdote P, Ceresini G, Chirieleison A, Panerai AE, Parmigiani S (2003) Individual housing induces altered immuno-endocrine responses to psychological stress in male mice. Psychoneuroendocrinology 28:540–558CrossRefPubMedGoogle Scholar
  2. Brooks SP, Dunnett SB (2009) Tests to assess motor phenotype in mice: a user’s guide. Nat Rev Neurosci 10:519–529CrossRefPubMedGoogle Scholar
  3. Buhot MC, Dubayle D, Malleret G, Javerzat S, Segu L (2001) Exploration, anxiety, and spatial memory in transgenic anophthalmic mice. Behav Neurosci 115:455–467CrossRefPubMedGoogle Scholar
  4. Cabe PA, Tilson HA, Mitchell CL, Dennis R (1978) A simple recording grip strength device. Pharmacol Biochem Behav 8:101–102CrossRefPubMedGoogle Scholar
  5. Carter RJ, Lione LA, Humby T, Mangiarini L, Mahal A, Bates GP, Dunnett SB, Morton AJ (1999) Characterization of progressive motor deficits in mice transgenic for the human Huntington’s disease mutation. J Neurosci 19:3248–3257PubMedGoogle Scholar
  6. Carter RJ, Morton J, Dunnett SB (2001) Motor coordination and balance in rodents. Curr Protoc Neurosci Chapter 8:Unit 8.12–Unit 18.12Google Scholar
  7. Crawley JN (2007) What’s wrong with my mouse?: Behavioral phenotyping of transgenic and knockout mice. Wiley, Hoboken, NJCrossRefGoogle Scholar
  8. Crawley JN (2008) Behavioral phenotyping strategies for mutant mice. Neuron 57:809–818CrossRefPubMedGoogle Scholar
  9. Crawley JN, Paylor R (1997) A proposed test battery and constellations of specific behavioral paradigms to investigate the behavioral phenotypes of transgenic and knockout mice. Horm Behav 31:197–211CrossRefPubMedGoogle Scholar
  10. D’Arbe M, Einstein R, Lavidis NA (2002) Stressful animal housing conditions and their potential effect on sympathetic neurotransmission in mice. Am J Physiol Regul Integr Comp Physiol 282:R1422–R1428CrossRefPubMedGoogle Scholar
  11. Dere E, Kart-Teke E, Huston JP, De Souza Silva MA (2006) The case for episodic memory in animals. Neurosci Biobehav Rev 30:1206–1224CrossRefPubMedGoogle Scholar
  12. Ennaceur A (2010) One-trial object recognition in rats and mice: methodological and theoretical issues. Behav Brain Res 215:244–254CrossRefPubMedGoogle Scholar
  13. Ennaceur A, Delacour J (1988) A new one-trial test for neurobiological studies of memory in rats. 1: behavioral data. Behav Brain Res 31:47–59CrossRefPubMedGoogle Scholar
  14. Garcia MF, Gordon MN, Hutton M, Lewis J, McGowan E, Dickey CA, Morgan D, Arendash GW (2004) The retinal degeneration (rd) gene seriously impairs spatial cognitive performance in normal and Alzheimer’s transgenic mice. Neuroreport 15:73–77CrossRefPubMedGoogle Scholar
  15. Gurney ME, Pu H, Chiu AY, Dal Canto MC, Polchow CY, Alexander DD, Caliendo J, Hentati A, Kwon YW, Deng HX et al (1994) Motor neuron degeneration in mice that express a human Cu, Zn superoxide dismutase mutation. Science 264:1772–1775CrossRefPubMedGoogle Scholar
  16. Hall CS (1934) Emotional behavior in the rat. 1. Defecation and urination as measures of individual differences in emotionality. J Comp Physiol 18:385–403Google Scholar
  17. Hampton TG, Amende I (2010) Treadmill gait analysis characterizes gait alterations in Parkinson’s disease and amyotrophic lateral sclerosis mouse models. J Mot Behav 42:1–4CrossRefPubMedGoogle Scholar
  18. Jones BJ, Roberts DJ (1968) The quantitative measurement of motor inco-ordination in naive mice using an accelerating rotarod. J Pharm Pharmacol 20: 302–304CrossRefPubMedGoogle Scholar
  19. Karl T, Pabst R, von Horsten S (2003) Behavioral phenotyping of mice in pharmacological and toxicological research. Exp Toxicol Pathol 55:69–83CrossRefPubMedGoogle Scholar
  20. Keshet GI, Tolwani RJ, Trejo A, Kraft P, Doyonnas R, Clayberger C, Weimann JM, Blau HM (2007) Increased host neuronal survival and motor function in BMT Parkinsonian mice: involvement of immunosuppression. J Comp Neurol 504:690–701CrossRefPubMedGoogle Scholar
  21. Kiernan BW, Garcion E, Ferguson J, Frost EE, Torres EM, Dunnett SB, Saga Y, Aizawa S, Faissner A, Kaur R, Franklin RJ, Ffrench-Constant C (1999) Myelination and behaviour of tenascin-C null transgenic mice. Eur J Neurosci 11:3082–3092CrossRefPubMedGoogle Scholar
  22. LeDoux MS (2005) Animal models of movement disorders. Elsevier Academic, Burlington, MAGoogle Scholar
  23. McFadyen MP, Kusek G, Bolivar VJ, Flaherty L (2003) Differences among eight inbred strains of mice in motor ability and motor learning on a rotorod. Genes Brain Behav 2:214–219CrossRefPubMedGoogle Scholar
  24. Moragrega I, Carrasco MC, Vicens P, Redolat R (2003) Spatial learning in male mice with different levels of aggressiveness: effects of housing conditions and nicotine administration. Behav Brain Res 147:1–8CrossRefPubMedGoogle Scholar
  25. Morris R (1984) Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods 11:47–60CrossRefPubMedGoogle Scholar
  26. Perry TA et al (1995) Cognitive and motor function in transgenic mice carrying excess copies of the 695 and 751 amino acid isoforms of the amyloid precursor protein gene. Alzheimers Res 1:5–14Google Scholar
  27. Porsolt R, Castagné V, Dürmüller N, Lemaire M, Moser P, Roux S, France C (2006) Central nervous system (CNS) safety pharmacology studies. In: Vogel HG, Hock F, Maas J, Mayer D (eds) Drug discovery and evaluation. Springer, Berlin, pp 15–60CrossRefGoogle Scholar
  28. Roder BJ, Bushneil EW, Sasseville AM (2000) Infants’ preferences for familiarity and novelty during the course of visual processing. Infancy 1:491–507CrossRefGoogle Scholar
  29. Rozas G, Guerra MJ, Labandeira-Garcia JL (1997) An automated rotarod method for quantitative drug-free evaluation of overall motor deficits in rat models of parkinsonism. Brain Res Brain Res Protoc 2:75–84CrossRefPubMedGoogle Scholar
  30. Rozas G, Lopez-Martin E, Guerra MJ, Labandeira-Garcia JL (1998) The overall rod performance test in the MPTP-treated-mouse model of Parkinsonism. J Neurosci Methods 83:165–175CrossRefPubMedGoogle Scholar
  31. Schallert T, Woodlee MT, Fleming SM (2002) Disentangling multiple types of recovery from brain injury. In: Krieglstein J (ed) Pharmacology of cerebral ischemia. Medpharm Scientific Publishers, Stuttgart, pp 201–216Google Scholar
  32. Schellinck HM, Cyr DP, Brown RE (2010) Chapter 7—How many ways can mouse behavioral experiments go wrong? Confounding variables in mouse models of neurodegenerative diseases and how to control them. In: Brockmann HJ, Ropre TJ, Naguib M, Wynne-Edwards KE, Mitani JC, Simmons LW (eds) Advances in the study of behavior. Academic, New York, pp 255–366Google Scholar
  33. Sedelis M, Hofele K, Auburger GW, Morgan S, Huston JP, Schwarting RK (2000) MPTP susceptibility in the mouse: behavioral, neurochemical, and histological analysis of gender and strain differences. Behav Genet 30:171–182CrossRefPubMedGoogle Scholar
  34. Vorhees CV, Williams MT (2006) Morris water maze: procedures for assessing spatial and related forms of learning and memory. Nat Protoc 1:848–858CrossRefPubMedPubMedCentralGoogle Scholar
  35. Wallace JE, Krauter EE, Campbell BA (1980) Motor and reflexive behavior in the aging rat. J Gerontol 35:364–370CrossRefPubMedGoogle Scholar
  36. Weydt P, Hong SY, Kliot M, Moller T (2003) Assessing disease onset and progression in the SOD1 mouse model of ALS. Neuroreport 14:1051–1054CrossRefPubMedGoogle Scholar
  37. Winer B, Brown R, Michels K (1991) Statistical principles in experimental design. McGraw-Hill, New YorkGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Jessica A. Hutter Saunders
    • 1
  • Max V. Kuenstling
    • 1
  • Robert A. Weir
    • 1
  • R. Lee Mosley
    • 1
  • Howard E. Gendelman
    • 1
    Email author
  1. 1.Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative DisordersUniversity of Nebraska Medical CenterOmahaUSA

Personalised recommendations