Skip to main content

Motor Function in Rodent Models of Neurodegenerative Disorders

  • Protocol
  • First Online:
Current Laboratory Methods in Neuroscience Research

Abstract

Motor dysfunction and behavior abnormalities are often present in neurological diseases and disorders. Rodent models of neurological diseases may display motor dysfunctions or behavior and cognitive deficits similar to human disease, but these are often difficult to measure and interpret. Nevertheless, tests of motor function and behavior are important tools for characterizing mouse models of diseases and for measuring motor function and cognitive deficits after treatment. In this chapter we will describe some of the most commonly-used tests of motor dysfunction, behavior, and cognition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bartolomucci A, Palanza P, Sacerdote P, Ceresini G, Chirieleison A, Panerai AE, Parmigiani S (2003) Individual housing induces altered immuno-endocrine responses to psychological stress in male mice. Psychoneuroendocrinology 28:540–558

    Article  CAS  PubMed  Google Scholar 

  • Brooks SP, Dunnett SB (2009) Tests to assess motor phenotype in mice: a user’s guide. Nat Rev Neurosci 10:519–529

    Article  CAS  PubMed  Google Scholar 

  • Buhot MC, Dubayle D, Malleret G, Javerzat S, Segu L (2001) Exploration, anxiety, and spatial memory in transgenic anophthalmic mice. Behav Neurosci 115:455–467

    Article  CAS  PubMed  Google Scholar 

  • Cabe PA, Tilson HA, Mitchell CL, Dennis R (1978) A simple recording grip strength device. Pharmacol Biochem Behav 8:101–102

    Article  CAS  PubMed  Google Scholar 

  • Carter RJ, Lione LA, Humby T, Mangiarini L, Mahal A, Bates GP, Dunnett SB, Morton AJ (1999) Characterization of progressive motor deficits in mice transgenic for the human Huntington’s disease mutation. J Neurosci 19:3248–3257

    CAS  PubMed  Google Scholar 

  • Carter RJ, Morton J, Dunnett SB (2001) Motor coordination and balance in rodents. Curr Protoc Neurosci Chapter 8:Unit 8.12–Unit 18.12

    Google Scholar 

  • Crawley JN (2007) What’s wrong with my mouse?: Behavioral phenotyping of transgenic and knockout mice. Wiley, Hoboken, NJ

    Book  Google Scholar 

  • Crawley JN (2008) Behavioral phenotyping strategies for mutant mice. Neuron 57:809–818

    Article  CAS  PubMed  Google Scholar 

  • Crawley JN, Paylor R (1997) A proposed test battery and constellations of specific behavioral paradigms to investigate the behavioral phenotypes of transgenic and knockout mice. Horm Behav 31:197–211

    Article  CAS  PubMed  Google Scholar 

  • D’Arbe M, Einstein R, Lavidis NA (2002) Stressful animal housing conditions and their potential effect on sympathetic neurotransmission in mice. Am J Physiol Regul Integr Comp Physiol 282:R1422–R1428

    Article  PubMed  Google Scholar 

  • Dere E, Kart-Teke E, Huston JP, De Souza Silva MA (2006) The case for episodic memory in animals. Neurosci Biobehav Rev 30:1206–1224

    Article  CAS  PubMed  Google Scholar 

  • Ennaceur A (2010) One-trial object recognition in rats and mice: methodological and theoretical issues. Behav Brain Res 215:244–254

    Article  CAS  PubMed  Google Scholar 

  • Ennaceur A, Delacour J (1988) A new one-trial test for neurobiological studies of memory in rats. 1: behavioral data. Behav Brain Res 31:47–59

    Article  CAS  PubMed  Google Scholar 

  • Garcia MF, Gordon MN, Hutton M, Lewis J, McGowan E, Dickey CA, Morgan D, Arendash GW (2004) The retinal degeneration (rd) gene seriously impairs spatial cognitive performance in normal and Alzheimer’s transgenic mice. Neuroreport 15:73–77

    Article  CAS  PubMed  Google Scholar 

  • Gurney ME, Pu H, Chiu AY, Dal Canto MC, Polchow CY, Alexander DD, Caliendo J, Hentati A, Kwon YW, Deng HX et al (1994) Motor neuron degeneration in mice that express a human Cu, Zn superoxide dismutase mutation. Science 264:1772–1775

    Article  CAS  PubMed  Google Scholar 

  • Hall CS (1934) Emotional behavior in the rat. 1. Defecation and urination as measures of individual differences in emotionality. J Comp Physiol 18:385–403

    Google Scholar 

  • Hampton TG, Amende I (2010) Treadmill gait analysis characterizes gait alterations in Parkinson’s disease and amyotrophic lateral sclerosis mouse models. J Mot Behav 42:1–4

    Article  PubMed  Google Scholar 

  • Jones BJ, Roberts DJ (1968) The quantitative measurement of motor inco-ordination in naive mice using an accelerating rotarod. J Pharm Pharmacol 20: 302–304

    Article  CAS  PubMed  Google Scholar 

  • Karl T, Pabst R, von Horsten S (2003) Behavioral phenotyping of mice in pharmacological and toxicological research. Exp Toxicol Pathol 55:69–83

    Article  PubMed  Google Scholar 

  • Keshet GI, Tolwani RJ, Trejo A, Kraft P, Doyonnas R, Clayberger C, Weimann JM, Blau HM (2007) Increased host neuronal survival and motor function in BMT Parkinsonian mice: involvement of immunosuppression. J Comp Neurol 504:690–701

    Article  PubMed  Google Scholar 

  • Kiernan BW, Garcion E, Ferguson J, Frost EE, Torres EM, Dunnett SB, Saga Y, Aizawa S, Faissner A, Kaur R, Franklin RJ, Ffrench-Constant C (1999) Myelination and behaviour of tenascin-C null transgenic mice. Eur J Neurosci 11:3082–3092

    Article  CAS  PubMed  Google Scholar 

  • LeDoux MS (2005) Animal models of movement disorders. Elsevier Academic, Burlington, MA

    Google Scholar 

  • McFadyen MP, Kusek G, Bolivar VJ, Flaherty L (2003) Differences among eight inbred strains of mice in motor ability and motor learning on a rotorod. Genes Brain Behav 2:214–219

    Article  CAS  PubMed  Google Scholar 

  • Moragrega I, Carrasco MC, Vicens P, Redolat R (2003) Spatial learning in male mice with different levels of aggressiveness: effects of housing conditions and nicotine administration. Behav Brain Res 147:1–8

    Article  CAS  PubMed  Google Scholar 

  • Morris R (1984) Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods 11:47–60

    Article  CAS  PubMed  Google Scholar 

  • Perry TA et al (1995) Cognitive and motor function in transgenic mice carrying excess copies of the 695 and 751 amino acid isoforms of the amyloid precursor protein gene. Alzheimers Res 1:5–14

    Google Scholar 

  • Porsolt R, Castagné V, Dürmüller N, Lemaire M, Moser P, Roux S, France C (2006) Central nervous system (CNS) safety pharmacology studies. In: Vogel HG, Hock F, Maas J, Mayer D (eds) Drug discovery and evaluation. Springer, Berlin, pp 15–60

    Chapter  Google Scholar 

  • Roder BJ, Bushneil EW, Sasseville AM (2000) Infants’ preferences for familiarity and novelty during the course of visual processing. Infancy 1:491–507

    Article  Google Scholar 

  • Rozas G, Guerra MJ, Labandeira-Garcia JL (1997) An automated rotarod method for quantitative drug-free evaluation of overall motor deficits in rat models of parkinsonism. Brain Res Brain Res Protoc 2:75–84

    Article  CAS  PubMed  Google Scholar 

  • Rozas G, Lopez-Martin E, Guerra MJ, Labandeira-Garcia JL (1998) The overall rod performance test in the MPTP-treated-mouse model of Parkinsonism. J Neurosci Methods 83:165–175

    Article  CAS  PubMed  Google Scholar 

  • Schallert T, Woodlee MT, Fleming SM (2002) Disentangling multiple types of recovery from brain injury. In: Krieglstein J (ed) Pharmacology of cerebral ischemia. Medpharm Scientific Publishers, Stuttgart, pp 201–216

    Google Scholar 

  • Schellinck HM, Cyr DP, Brown RE (2010) Chapter 7—How many ways can mouse behavioral experiments go wrong? Confounding variables in mouse models of neurodegenerative diseases and how to control them. In: Brockmann HJ, Ropre TJ, Naguib M, Wynne-Edwards KE, Mitani JC, Simmons LW (eds) Advances in the study of behavior. Academic, New York, pp 255–366

    Google Scholar 

  • Sedelis M, Hofele K, Auburger GW, Morgan S, Huston JP, Schwarting RK (2000) MPTP susceptibility in the mouse: behavioral, neurochemical, and histological analysis of gender and strain differences. Behav Genet 30:171–182

    Article  CAS  PubMed  Google Scholar 

  • Vorhees CV, Williams MT (2006) Morris water maze: procedures for assessing spatial and related forms of learning and memory. Nat Protoc 1:848–858

    Article  PubMed  PubMed Central  Google Scholar 

  • Wallace JE, Krauter EE, Campbell BA (1980) Motor and reflexive behavior in the aging rat. J Gerontol 35:364–370

    Article  CAS  PubMed  Google Scholar 

  • Weydt P, Hong SY, Kliot M, Moller T (2003) Assessing disease onset and progression in the SOD1 mouse model of ALS. Neuroreport 14:1051–1054

    Article  PubMed  Google Scholar 

  • Winer B, Brown R, Michels K (1991) Statistical principles in experimental design. McGraw-Hill, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Howard E. Gendelman M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Saunders, J.A.H., Kuenstling, M.V., Weir, R.A., Mosley, R.L., Gendelman, H.E. (2014). Motor Function in Rodent Models of Neurodegenerative Disorders. In: Xiong, H., Gendelman, H.E. (eds) Current Laboratory Methods in Neuroscience Research. Springer Protocols Handbooks. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8794-4_32

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8794-4_32

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8793-7

  • Online ISBN: 978-1-4614-8794-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics