Advertisement

Bioinformatic Methods and Resources for Neuroscience Research

  • Chittibabu GudaEmail author
Protocol
  • 4.3k Downloads
Part of the Springer Protocols Handbooks book series (SPH)

Abstract

Students majoring in life sciences are seldom exposed to the use of bioinformatic tools in their regular coursework. Exponential growth of data in the biomedical research disciplines, including neuroscience, warrants the need for training undergraduate and graduate students in the use of bioinformatic and neuroinformatic tools. Two main objectives of this chapter are to provide an overview of important bioinformatic and neuroinformatic resources and to explain the usage of the commonly used bioinformatic data analysis tools. For each major tool, the theory behind the methodology is briefly described to enable the user to understand how the program works. The bioinformatic resources described in this article refer to the most commonly used tools and databases for sequence homology search, multiple sequence alignment, protein domain analysis, gene set enrichment analysis, pathway analysis, and interaction network analysis. In addition to the general-purpose tools and databases, a list of neuroinformatic specific resources is provided.

Keywords

Neuroinformatics Bioinformatics Computational neuroscience 

References

  1. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410CrossRefPubMedGoogle Scholar
  2. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bandrowski AE, Cachat J, Li Y, Müller HM, Sternberg PW, Ciccarese P, Clark T, Marenco L, Wang R, Astakhov V, Grethe JS, Martone ME (2012) A hybrid human and machine resource curation pipeline for the Neuroscience Information Framework. Database 2012:bas005CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bjaalie JG, Grillner S (2007) Global neuroinformatics: the International Neuroinformatics Coordinating Facility. J Neurosci 27:3613–3615CrossRefPubMedGoogle Scholar
  5. Borodovsky M, Lomsadze A (2011) Eukaryotic gene prediction using GeneMark.hmm-E and GeneMark-ES. Curr Protoc Bioinformatics Chapter 4:Unit 4.6.1–10Google Scholar
  6. Caspi R, Altman T, Dreher K, Fulcher CA, Subhraveti P, Keseler IM, Kothari A, Krummenacker M, Latendresse M, Mueller LA, Ong Q, Paley S, Pujar A, Shearer AG, Travers M, Weerasinghe D, Zhang P, Karp PD (2012) The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res 40:D742–D753CrossRefPubMedGoogle Scholar
  7. Dayhoff MO, Schwartz RM, Orcutt BC (1978) A model of evolutionary change in protein. Atlas Protein Seq Struct 5:345–352Google Scholar
  8. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797CrossRefPubMedPubMedCentralGoogle Scholar
  9. Geschwind D (2004) GENSAT: a genomic resource for neuroscience research. Lancet Neurol 3:82CrossRefPubMedGoogle Scholar
  10. Gonnet GH, Cohen MA, Benner SA (1992) Exhaustive matching of the entire protein sequence database. Science 256:1443–1445CrossRefPubMedGoogle Scholar
  11. Gribskov M, McLachlan AD, Eisenberg D (1987) Profile analysis: detection of distantly related proteins. Proc Natl Acad Sci U S A 84:4355–4358CrossRefPubMedPubMedCentralGoogle Scholar
  12. Henikoff S, Henikoff JG (1992) Amino acid substitution matrices from protein blocks. Proc Natl Acad Sci U S A 89:10915–10919CrossRefPubMedPubMedCentralGoogle Scholar
  13. Huerta MF, Koslow SH, Leshner AI (1993) The Human Brain Project: an international resource. Trends Neurosci 16:436–438CrossRefPubMedGoogle Scholar
  14. Jones AR, Overly CC, Sunkin SM (2009) The Allen brain atlas: 5 years and beyond. Nat Rev Neurosci 10:821–828CrossRefPubMedGoogle Scholar
  15. Kanehisa M, Goto S, Sato Y, Furumichi M, Tanabe M (2012) KEGG for integration and interpretation of large-scale molecular datasets. Nucleic Acids Res 40:D109–D114CrossRefPubMedGoogle Scholar
  16. Kötter R (2004) Online retrieval, processing, and visualization of primate connectivity data from the CoCoMac database. Neuroinformatics 2:127–144CrossRefPubMedGoogle Scholar
  17. Marchler-Bauer A, Panchenko AR, Shoemaker BA, Thiessen PA, Geer LY, Bryant SH (2002) CDD: a database of conserved domain alignments with links to domain three-dimensional structure. Nucleic Acids Res 30:281–283CrossRefPubMedPubMedCentralGoogle Scholar
  18. Pierleoni A, Martelli PL, Casadio R (2008) PredGPI: a GPI-anchor predictor. BMC Bioinformatics 23:392CrossRefGoogle Scholar
  19. Punta M, Coggill PC, Eberhardt RY, Mistry J, Tate J, Boursnell C, Pang N, Forslund K, Ceric G, Clements J, Heger A, Holm L, Sonnhammer EL, Eddy SR, Bateman A, Finn RD (2012) The Pfam protein families database. Nucleic Acids Res 40:D290–D301CrossRefPubMedGoogle Scholar
  20. Smoot ME, Ono K, Ruscheinski J, Wang PL, Ideker T (2011) Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics 27:431–432CrossRefPubMedGoogle Scholar
  21. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, Mesirov JP (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 102:15545–15550Google Scholar
  22. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680CrossRefPubMedPubMedCentralGoogle Scholar
  23. Yoon BJ (2009) Hidden Markov models and their applications in biological sequence analysis. Curr Genomics 10:402–415CrossRefPubMedPubMedCentralGoogle Scholar
  24. Zhang Z, Schwartz S, Wagner L, Miller W (2000) A greedy algorithm for aligning DNA sequences. J Comput Biol 7:203–214CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Genetics, Cell Biology and AnatomyUniversity of Nebraska Medical CenterOmahaUSA
  2. 2.Bioinformatics and Systems Biology Core FacilityUniversity of Nebraska Medical CenterOmahaUSA
  3. 3.Member, UNMC Fred and Pamela Buffet Cancer Center & Eppley InstituteUniversity of Nebraska Medical CenterOmahaUSA
  4. 4.Courtesy Faculty, Department of Biochemistry and Molecular Biology, College of MedicineUniversity of Nebraska Medical CenterOmahaUSA

Personalised recommendations