DNA Microarrays as a Tool for Neurosciences Research

  • James D. EudyEmail author
  • Lynette Smith
Part of the Springer Protocols Handbooks book series (SPH)


DNA microarray technology is a useful tool to further our understanding of underlying biological pathways governing the behavior of cells and tissues. In fact, microarrays have evolved over the last 10 years or so to become one of the major technologies utilized in biomedical research. This chapter will provide a brief history of the development of DNA microarray technology, a brief survey of widely accepted microarray platforms, and then expand upon critical components of DNA microarray experimentation necessary to ensure optimal outcomes in a given microarray experiment. Topics covered will include the necessity of a good initial experimental design, quality control issues with respect to input RNA or DNA, appropriate use of biological replicates relevant to a given biological question, and analysis strategies employed to extract meaningful results from a microarray experiment.


DNA microarray Gene expression RNA DNA Normalization Hybridization Analysis 


  1. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B 57:289–300Google Scholar
  2. BRB-Array Tools version 4.1.0 stable release developed by Dr. Richard Simon and Amy Peng LamGoogle Scholar
  3. Bulyk ML (2006) DNA microarray technologies for measuring protein-DNA interactions. Curr Opin Biotechnol 17(4):422–430CrossRefPubMedPubMedCentralGoogle Scholar
  4. DeRisi J, Penland L, Brown P, Bittner M, Meltzer P, Ray M, Chen Y, Su Y, Trent J (1996) Use of a cDNA microarray to analyze gene expression patterns in human cancer. Nat Genet 14:457–460CrossRefPubMedGoogle Scholar
  5. DeRisi J, Iyer V, Brown P (1997) Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 278:680–686CrossRefPubMedGoogle Scholar
  6. R Development Core Team (2008) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. ISBN 3-900051-07-0. URL
  7. Dobbin KK, Zhao Y, Simon RM (2008) How large a training set is needed to develop a classifier for microarray data? Clin Cancer Res 14(1):108–114CrossRefPubMedGoogle Scholar
  8. Edelmann L, Hirschhorn I (2009) Clinical utility of array cGH for the detection of chromosomal imbalances associated with mental retardation multiple congenital anomalies. Ann N Y Acad Sci 1151:157–166CrossRefPubMedGoogle Scholar
  9. Eisen MB, Spellman PT, Brown PO, Botstein D (1998) Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci U S A 95(25):14863–14868CrossRefPubMedPubMedCentralGoogle Scholar
  10. Han E, Wu Y, McCarter R, Nelson JF, Richardson A, Hilsenbeck SG (2004) Reproducibility, sources of variability, pooling, and sample size: important considerations for the design of high-density oligonucleotide array experiments. J Gerontol A Biol Sci Med Sci 59(4):306–315CrossRefPubMedGoogle Scholar
  11. Irizarry RA, Bolstad BM, Collin F, Cope LM, Hobbs B, Speed TP (2003) Summaries of Affymetrix GeneChip probe level data. Nucleic Acids Res 1(4):e15CrossRefGoogle Scholar
  12. Leung YF, Cavalieri D (2003) Fundamentals of cDNA microarray data analysis. Trends Genet 19(11):649–659CrossRefPubMedGoogle Scholar
  13. Li C, Hung Wong W (2001) Model-based analysis of oligonucleotide arrays: expression index computation and outlier detection. Proc Natl Acad Sci U S A 98:31–36CrossRefPubMedGoogle Scholar
  14. McShane LM, Shih JH, Michalowska AM (2003) Statistical issues in the design and analysis of gene expression microarray studies of animal models. J Mammary Gland Biol Neoplasia 8(3):359–374CrossRefPubMedGoogle Scholar
  15. Schena M, Shalon D, Davis R, Brown P (1995) Quantitative monitoring of gene expression patterns with a complimentary DNA microarray. Science 270:467–470CrossRefPubMedGoogle Scholar
  16. Simon R, Radmacher MD, Dobbin K (2002) Desing of studies using DNA microarrays. Genet Epidemiol 23:21–36CrossRefPubMedGoogle Scholar
  17. Simon RM, Korn EL, McShane LM, Radmacher MD, Wright GW, Zhao Y (2003) Design and analysis of DNA microarray investigations. Springer, New York, NYGoogle Scholar
  18. Smyth GK (2005) Limma: linear models for microarray data. In: Gentleman R, Carey V, Dudoit S, Irizarry R, Huber W (eds) Bioinformatics and computational biology solutions using R and bioconductor. Springer, New YorkGoogle Scholar
  19. Smyth GK, Yang Y-H, Speed TP (2003) Statistical issues in microarray data analysis. Methods Mol Biol 224:111–136PubMedGoogle Scholar
  20. Tamayo P, Slonim D, Mesirov J, Zhu Q, Kitareewan S, Dmitrovsky E, Lander ES, Golub TR (1999) Interpreting patterns of gene expression with self-organizing maps: methods and application to hematopoietic differentiation. Proc Natl Acad Sci U S A 96(6):2907–2912CrossRefPubMedPubMedCentralGoogle Scholar
  21. Tusher V, Tibshirani R, Chu G (2001) Significance analysis of microarrays applied to transcriptional responses to ionizing radiation. Proc Natl Acad Sci U S A 98:5116–5121CrossRefPubMedPubMedCentralGoogle Scholar
  22. Wright GW, Simon R (2003) A random variance model for detection of differential gene expression in small microarray experiments. Bioinformatics 19:2448–2455CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Genetics, Cell Biology, and AnatomyUniversity of Nebraska Medical CenterOmahaUSA
  2. 2.Department of Biostatistics, College of Public HealthUniversity of Nebraska Medical CenterOmahaUSA

Personalised recommendations