Advertisement

X-Ray, Positron Emission, and Single Photon Emission Tomographic Bioimaging

  • Katherine A. Estes
  • Jacob C. Peterson
  • Adam M. Szlachetka
  • R. Lee MosleyEmail author
Protocol
  • 3.9k Downloads
Part of the Springer Protocols Handbooks book series (SPH)

Abstract

Computer-aided tomography is commonly used for biomedical imaging in medicine and research. Most systems utilize some form of energized probe to either visualize tissues and/or localize a labeled compound. Common to all forms of tomographic imaging is the acquisition of cross-sectional images in a 360° rotation. Computer-interfaced software is used to reconstruct two-dimensional images into a three-dimensional representation. This allows selected two-dimensional images to be analyzed in any axis. In computed tomography (CT), also called computer-aided tomography or computerized axial tomography, X-rays produced by a cathode ray tube provide an external source of radiation that passes through the subject and are collected by a detector array. Density variations of different organs, tissues, and structures allow different amounts of radiation to penetrate and reach the detector to create an anatomical image.

In emission computed tomography, radionuclide probes are administered to the subject and provide an internal source of radiation. Positron emission tomography (PET) is used to detect radionuclides that emit positrons (β+ particles), and single photon emission computed tomography (SPECT) detects radionuclides that emit gamma (γ) rays. The radionuclide probes are conjugated to diagnostic or therapeutic agents that ultimately target specific tissues. CT used in conjunction with PET or SPECT generate images that are co-registered, resulting in merged images wherein anatomical regions of interest can be defined and analyzed to detect the location and intensity of radionuclide probes. Such methods are used for diagnostic and therapeutic purposes as well as to monitor disease progression.

Keywords

Bioimaging Emission computed tomography CT PET SPECT Tomography Radioisotopes Digital image reconstruction 

References

  1. Accorsi R (2008) Brain single-photon emission CT physics principles. Am J Neuroradiol 29:1247–1256CrossRefPubMedGoogle Scholar
  2. Acton PD, Zhou R (2005) Imaging reporter genes for cell tracking with PET and SPECT. Q J Nucl Med Mol Imaging 49:349–360PubMedGoogle Scholar
  3. Anger HO (1958) Scintillation camera. Rev Sci Instrum 29:27–33CrossRefGoogle Scholar
  4. Asenbaum S, Brucke T, Pirker W, Podreka I, Angelberger P, Wenger S, Wober C, Muller C, Deecke L (1997) Imaging of dopamine transporters with iodine-123-beta-CIT and SPECT in Parkinson’s disease. J Nucl Med 38:1–6PubMedGoogle Scholar
  5. Baranowska-Kortylewicz J, Abe M, Pietras K, Kortylewicz ZP, Kurizaki T, Nearman J, Paulsson J, Mosley RL, Enke CA, Ostman A (2005) Effect of platelet-derived growth factor receptor-beta inhibition with STI571 on radioimmunotherapy. Cancer Res 65:7824–7831CrossRefPubMedPubMedCentralGoogle Scholar
  6. Basu S, Kwee TC, Surti S, Akin EA, Yoo D, Alavi A (2011) Fundamentals of PET and PET/CT imaging. Ann N Y Acad Sci 1228:1–18CrossRefPubMedGoogle Scholar
  7. Bazañez-Borgert M (2006) Basics of SPECT, PET and PET/CT imaging. http://www14.informatik.tu-muenchen.de/konferenzen/Jass06/courses/6/files/Bazanez_Borgert_paper.pdf
  8. Bengel FM, Camici P, Lamare F (2009) Nuclear cardiology (PET and SPECT): basic principles. In: Zamorano JL, Bax JJ, Rademakers FE, Knuuti J (eds) The ESC textbook of cardiovascular imaging. Springer, London, pp 73–88Google Scholar
  9. Beyer T, Townsend DW, Brun T, Kinahan PE, Charron M, Roddy R, Jerin J, Young J, Byars L, Nutt R (2000) A combined PET/CT scanner for clinical oncology. J Nucl Med 41:1369–1379PubMedGoogle Scholar
  10. Bybel B, Brunken RC, Shah SN, Wu G, Turbiner E, Neumann DR (2006) PET and PET/CT imaging: what clinicians need to know. Cleve Clin J Med 73:1075–1087CrossRefPubMedGoogle Scholar
  11. Bybel B, Brunken RC, DiFilippo FP, Neumann DR, Wu G, Cerqueira MD (2008) SPECT/CT imaging: clinical utility of an emerging technology. Radiographics 28:1097–1113CrossRefPubMedGoogle Scholar
  12. Cao Z, Bal G, Accorsi R, Acton PD (2005) Optimal number of pinholes in multi-pinhole SPECT for mouse brain imaging—a simulation study. Phys Med Biol 50:4609–4624CrossRefPubMedGoogle Scholar
  13. Doorduin J, de Vries EF, Dierckx RA, Klein HC (2008) PET imaging of the peripheral benzodiazepine receptor: monitoring disease progression and therapy response in neurodegenerative disorders. Curr Pharm Des 14:3297–3315CrossRefPubMedGoogle Scholar
  14. Engdahl JC, Joung J, Chowdhury S (2007) Multi-pinhole collimation for nuclear medical imaging, Siemens Medical Solutions USA, Inc. US Patent 7,166,846Google Scholar
  15. Fleischmann D, Boas FE (2011) Computed tomography—old ideas and new technology. Eur Radiol 21:510–517CrossRefPubMedGoogle Scholar
  16. Flohr TG, Schaller S, Stierstorfer K, Bruder H, Ohnesorge BM, Schoepf UJ (2005) Multi-detector row CT systems and image-reconstruction techniques. Radiology 235:756–773CrossRefPubMedGoogle Scholar
  17. Funk T, Despres P, Barber WC, Shah KS, Hasegawa BH (2006) A multipinhole small animal SPECT system with submillimeter spatial resolution. Med Phys 33:1259–1268CrossRefPubMedGoogle Scholar
  18. Gendelman HE, Destache CJ, Zelivyanskaya ML, Nelson JA, Boska MD, Biskup TM, McCarthy MK, Carlson KA, Nemachek C, Benner EJ, Mosley RL (2003) Neuroimaging and proteomic tracking of neurodegeneration in MPTP-treated mice. Ann N Y Acad Sci 991:319–321CrossRefGoogle Scholar
  19. Goldman LW (2007) Principles of CT and CT technology. J Nucl Med Technol 35:115–128, quiz 129-130CrossRefPubMedGoogle Scholar
  20. Goldman LW (2008) Principles of CT: multislice CT. J Nucl Med Technol 36:57–68, quiz 75-56CrossRefPubMedGoogle Scholar
  21. Gong N, Liu J, Reynolds AD, Gorantla S, Mosley RL, Gendelman HE (2011) Brain ingress of regulatory T cells in a murine model of HIV-1 encephalitis. J Neuroimmunol 230:33–41CrossRefPubMedGoogle Scholar
  22. Groch MW, Erwin WD (2000) SPECT in the year 2000: basic principles. J Nucl Med Technol 28:233–244PubMedGoogle Scholar
  23. Gupta R, Cheung AC, Bartling SH, Lisauskas J, Grasruck M, Leidecker C, Schmidt B, Flohr T, Brady TJ (2008) Flat-panel volume CT: fundamental principles, technology, and applications. Radiographics 28:2009–2022CrossRefPubMedGoogle Scholar
  24. Lewellen TK (2008) Recent developments in PET detector technology. Phys Med Biol 53:R287–R317CrossRefPubMedPubMedCentralGoogle Scholar
  25. Lewellen TK (2010) The challenge of detector designs for PET. AJR Am J Roentgenol 195:301–309CrossRefPubMedGoogle Scholar
  26. MacDonald LR, Patt BE, Iwanczyk JS, Tsui BMW, Wang Y, Frey EC, Wessell DE, Acton PD, Kung HF (2001) Pinhole SPECT of mice using the LumaGEM gamma camera. IEEE Trans Nucl Sci 48:830–836CrossRefGoogle Scholar
  27. Madsen MT (2007) Recent advances in SPECT imaging. J Nucl Med 48:661–673CrossRefPubMedGoogle Scholar
  28. Mahesh M (2002) Search for isotropic resolution in CT from conventional through multiple-row detector. Radiographics 22:949–962CrossRefPubMedGoogle Scholar
  29. McParland BJ (2010) The biodistribution (II): human. In: Medicine N (ed) Radiation dosimetry. Springer, London, pp 533–574Google Scholar
  30. Meikle SR, Kench P, Kassiou M, Banati RB (2005) Small animal SPECT and its place in the matrix of molecular imaging technologies. Phys Med Biol 50:R45–R61CrossRefPubMedGoogle Scholar
  31. Moses WW (2007) Recent advances and future advances in time-of-flight PET. Nucl Instrum Methods Phys Res, Sect A 580:919–924CrossRefGoogle Scholar
  32. Pavese N, Rivero-Bosch M, Lewis SJ, Whone AL, Brooks DJ (2011) Progression of monoaminergic dysfunction in Parkinson’s disease: a longitudinal 18F-dopa PET study. Neuroimage 56:1463–1468CrossRefPubMedGoogle Scholar
  33. Peterson TE, Furenlid LR (2011) SPECT detectors: the anger camera and beyond. Phys Med Biol 56:R145–R182CrossRefPubMedPubMedCentralGoogle Scholar
  34. Rahmim A, Zaidi H (2008) PET versus SPECT: strengths, limitations and challenges. Nucl Med Commun 29:193–207CrossRefPubMedGoogle Scholar
  35. Robilotta C (2004) Emission tomography: SPECT and PET. Computación Sistemas 7:167–174Google Scholar
  36. Rosenthal MS, Cullom J, Hawkins W, Moore SC, Tsui BM, Yester M (1995) Quantitative SPECT imaging: a review and recommendations by the Focus Committee of the Society of Nuclear Medicine Computer and Instrumentation Council. J Nucl Med 36:1489–1513PubMedGoogle Scholar
  37. Rydberg J, Buckwalter KA, Caldemeyer KS, Phillips MD, Conces DJ Jr, Aisen AM, Persohn SA, Kopecky KK (2000) Multisection CT: scanning techniques and clinical applications. Radiographics 20:1787–1806CrossRefPubMedGoogle Scholar
  38. Saha GB (2010) Instruments for radiation detection and measurements. In: Saha GB (ed) Fundamentals of nuclear pharmacy, 6th edn. Springer, New York, NY, pp 33–48CrossRefGoogle Scholar
  39. Seo Y, Mari C, Hasegawa BH (2008a) Technological development and advances in single-photon emission computed tomography/computed tomography. Semin Nucl Med 38:177–198CrossRefPubMedPubMedCentralGoogle Scholar
  40. Seo Y, Teo BK, Hadi M, Schreck C, Bacharach SL, Hasegawa BH (2008b) Quantitative accuracy of PET/CT for image-based kinetic analysis. Med Phys 35:3086–3089CrossRefPubMedPubMedCentralGoogle Scholar
  41. Shwartz SC, Ohana I (2003) SPECT gamma camera, USA, U.C.G. Technologies. US Patent US20030208117Google Scholar
  42. Tang J, Kuwabara H, Wong DF, Rahmim A (2010) Direct 4D reconstruction of parametric images incorporating anato-functional joint entropy. Phys Med Biol 55:4261–4272CrossRefPubMedPubMedCentralGoogle Scholar
  43. Townsend DW (2004) Physical principles and technology of clinical PET imaging. Ann Acad Med Singapore 33:133–145PubMedGoogle Scholar
  44. Trott CM, El Fakhri G (2008) Sequential and simultaneous dual-isotope brain SPECT: comparison with PET for estimation and discrimination tasks in early Parkinson disease. Med Phys 35:3343–3353CrossRefPubMedPubMedCentralGoogle Scholar
  45. van Elmpt W, Hamill J, Jones J, De Ruysscher D, Lambin P, Ollers M (2011) Optimal gating compared to 3D and 4D PET reconstruction for characterization of lung tumours. Eur J Nucl Med Mol Imaging 38: 843–855CrossRefPubMedPubMedCentralGoogle Scholar
  46. Wagenaar DJ, Zhang J, Kazules T, Vandehei T, Bolle E, Chowdhury S, Parnham K, Patt BE (2006) In vivo dual-isotope SPECT imaging with improved energy resolution. In: Conference Record IEEE Nuclear Science Symposium, San Diego, CA, pp 3821–3826Google Scholar
  47. Wang D, Sima M, Mosley RL, Davda JP, Tietze N, Miller SC, Gwilt PR, Kopeckova P, Kopecek J (2006) Pharmacokinetic and biodistribution studies of a bone-targeting drug delivery system based on N-(2-hydroxypropyl)methacrylamide copolymers. Mol Pharm 3:717–725CrossRefPubMedPubMedCentralGoogle Scholar
  48. Warburg O (1956) On the origin of cancer cells. Science 123:309–314CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Katherine A. Estes
    • 1
  • Jacob C. Peterson
    • 1
  • Adam M. Szlachetka
    • 1
  • R. Lee Mosley
    • 1
    Email author
  1. 1.Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative DisordersUniversity of Nebraska Medical CenterOmahaUSA

Personalised recommendations