Skip to main content

X-Ray, Positron Emission, and Single Photon Emission Tomographic Bioimaging

  • Protocol
  • First Online:
Current Laboratory Methods in Neuroscience Research

Part of the book series: Springer Protocols Handbooks ((SPH))

  • 5237 Accesses

Abstract

Computer-aided tomography is commonly used for biomedical imaging in medicine and research. Most systems utilize some form of energized probe to either visualize tissues and/or localize a labeled compound. Common to all forms of tomographic imaging is the acquisition of cross-sectional images in a 360° rotation. Computer-interfaced software is used to reconstruct two-dimensional images into a three-dimensional representation. This allows selected two-dimensional images to be analyzed in any axis. In computed tomography (CT), also called computer-aided tomography or computerized axial tomography, X-rays produced by a cathode ray tube provide an external source of radiation that passes through the subject and are collected by a detector array. Density variations of different organs, tissues, and structures allow different amounts of radiation to penetrate and reach the detector to create an anatomical image.

In emission computed tomography, radionuclide probes are administered to the subject and provide an internal source of radiation. Positron emission tomography (PET) is used to detect radionuclides that emit positrons (β+ particles), and single photon emission computed tomography (SPECT) detects radionuclides that emit gamma (γ) rays. The radionuclide probes are conjugated to diagnostic or therapeutic agents that ultimately target specific tissues. CT used in conjunction with PET or SPECT generate images that are co-registered, resulting in merged images wherein anatomical regions of interest can be defined and analyzed to detect the location and intensity of radionuclide probes. Such methods are used for diagnostic and therapeutic purposes as well as to monitor disease progression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Accorsi R (2008) Brain single-photon emission CT physics principles. Am J Neuroradiol 29:1247–1256

    Article  CAS  PubMed  Google Scholar 

  • Acton PD, Zhou R (2005) Imaging reporter genes for cell tracking with PET and SPECT. Q J Nucl Med Mol Imaging 49:349–360

    CAS  PubMed  Google Scholar 

  • Anger HO (1958) Scintillation camera. Rev Sci Instrum 29:27–33

    Article  CAS  Google Scholar 

  • Asenbaum S, Brucke T, Pirker W, Podreka I, Angelberger P, Wenger S, Wober C, Muller C, Deecke L (1997) Imaging of dopamine transporters with iodine-123-beta-CIT and SPECT in Parkinson’s disease. J Nucl Med 38:1–6

    CAS  PubMed  Google Scholar 

  • Badawi R (1999) Introduction to PET physics. http://depts.washington.edu/nucmed/IRL/pet_intro/intro_src/section2.html

  • Baranowska-Kortylewicz J, Abe M, Pietras K, Kortylewicz ZP, Kurizaki T, Nearman J, Paulsson J, Mosley RL, Enke CA, Ostman A (2005) Effect of platelet-derived growth factor receptor-beta inhibition with STI571 on radioimmunotherapy. Cancer Res 65:7824–7831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Basu S, Kwee TC, Surti S, Akin EA, Yoo D, Alavi A (2011) Fundamentals of PET and PET/CT imaging. Ann N Y Acad Sci 1228:1–18

    Article  CAS  PubMed  Google Scholar 

  • Bazañez-Borgert M (2006) Basics of SPECT, PET and PET/CT imaging. http://www14.informatik.tu-muenchen.de/konferenzen/Jass06/courses/6/files/Bazanez_Borgert_paper.pdf

  • Bengel FM, Camici P, Lamare F (2009) Nuclear cardiology (PET and SPECT): basic principles. In: Zamorano JL, Bax JJ, Rademakers FE, Knuuti J (eds) The ESC textbook of cardiovascular imaging. Springer, London, pp 73–88

    Google Scholar 

  • Beyer T, Townsend DW, Brun T, Kinahan PE, Charron M, Roddy R, Jerin J, Young J, Byars L, Nutt R (2000) A combined PET/CT scanner for clinical oncology. J Nucl Med 41:1369–1379

    CAS  PubMed  Google Scholar 

  • Bybel B, Brunken RC, Shah SN, Wu G, Turbiner E, Neumann DR (2006) PET and PET/CT imaging: what clinicians need to know. Cleve Clin J Med 73:1075–1087

    Article  PubMed  Google Scholar 

  • Bybel B, Brunken RC, DiFilippo FP, Neumann DR, Wu G, Cerqueira MD (2008) SPECT/CT imaging: clinical utility of an emerging technology. Radiographics 28:1097–1113

    Article  PubMed  Google Scholar 

  • Cao Z, Bal G, Accorsi R, Acton PD (2005) Optimal number of pinholes in multi-pinhole SPECT for mouse brain imaging—a simulation study. Phys Med Biol 50:4609–4624

    Article  PubMed  Google Scholar 

  • Doorduin J, de Vries EF, Dierckx RA, Klein HC (2008) PET imaging of the peripheral benzodiazepine receptor: monitoring disease progression and therapy response in neurodegenerative disorders. Curr Pharm Des 14:3297–3315

    Article  CAS  PubMed  Google Scholar 

  • Engdahl JC, Joung J, Chowdhury S (2007) Multi-pinhole collimation for nuclear medical imaging, Siemens Medical Solutions USA, Inc. US Patent 7,166,846

    Google Scholar 

  • Fleischmann D, Boas FE (2011) Computed tomography—old ideas and new technology. Eur Radiol 21:510–517

    Article  PubMed  Google Scholar 

  • Flohr TG, Schaller S, Stierstorfer K, Bruder H, Ohnesorge BM, Schoepf UJ (2005) Multi-detector row CT systems and image-reconstruction techniques. Radiology 235:756–773

    Article  PubMed  Google Scholar 

  • Funk T, Despres P, Barber WC, Shah KS, Hasegawa BH (2006) A multipinhole small animal SPECT system with submillimeter spatial resolution. Med Phys 33:1259–1268

    Article  PubMed  Google Scholar 

  • Gendelman HE, Destache CJ, Zelivyanskaya ML, Nelson JA, Boska MD, Biskup TM, McCarthy MK, Carlson KA, Nemachek C, Benner EJ, Mosley RL (2003) Neuroimaging and proteomic tracking of neurodegeneration in MPTP-treated mice. Ann N Y Acad Sci 991:319–321

    Article  Google Scholar 

  • Goldman LW (2007) Principles of CT and CT technology. J Nucl Med Technol 35:115–128, quiz 129-130

    Article  PubMed  Google Scholar 

  • Goldman LW (2008) Principles of CT: multislice CT. J Nucl Med Technol 36:57–68, quiz 75-56

    Article  PubMed  Google Scholar 

  • Gong N, Liu J, Reynolds AD, Gorantla S, Mosley RL, Gendelman HE (2011) Brain ingress of regulatory T cells in a murine model of HIV-1 encephalitis. J Neuroimmunol 230:33–41

    Article  CAS  PubMed  Google Scholar 

  • Groch MW, Erwin WD (2000) SPECT in the year 2000: basic principles. J Nucl Med Technol 28:233–244

    CAS  PubMed  Google Scholar 

  • Gupta R, Cheung AC, Bartling SH, Lisauskas J, Grasruck M, Leidecker C, Schmidt B, Flohr T, Brady TJ (2008) Flat-panel volume CT: fundamental principles, technology, and applications. Radiographics 28:2009–2022

    Article  PubMed  Google Scholar 

  • Lewellen TK (2008) Recent developments in PET detector technology. Phys Med Biol 53:R287–R317

    Article  PubMed  PubMed Central  Google Scholar 

  • Lewellen TK (2010) The challenge of detector designs for PET. AJR Am J Roentgenol 195:301–309

    Article  PubMed  Google Scholar 

  • MacDonald LR, Patt BE, Iwanczyk JS, Tsui BMW, Wang Y, Frey EC, Wessell DE, Acton PD, Kung HF (2001) Pinhole SPECT of mice using the LumaGEM gamma camera. IEEE Trans Nucl Sci 48:830–836

    Article  Google Scholar 

  • Madsen MT (2007) Recent advances in SPECT imaging. J Nucl Med 48:661–673

    Article  PubMed  Google Scholar 

  • Mahesh M (2002) Search for isotropic resolution in CT from conventional through multiple-row detector. Radiographics 22:949–962

    Article  PubMed  Google Scholar 

  • McParland BJ (2010) The biodistribution (II): human. In: Medicine N (ed) Radiation dosimetry. Springer, London, pp 533–574

    Google Scholar 

  • Meikle SR, Kench P, Kassiou M, Banati RB (2005) Small animal SPECT and its place in the matrix of molecular imaging technologies. Phys Med Biol 50:R45–R61

    Article  CAS  PubMed  Google Scholar 

  • Moses WW (2007) Recent advances and future advances in time-of-flight PET. Nucl Instrum Methods Phys Res, Sect A 580:919–924

    Article  CAS  Google Scholar 

  • Pavese N, Rivero-Bosch M, Lewis SJ, Whone AL, Brooks DJ (2011) Progression of monoaminergic dysfunction in Parkinson’s disease: a longitudinal 18F-dopa PET study. Neuroimage 56:1463–1468

    Article  CAS  PubMed  Google Scholar 

  • Peterson TE, Furenlid LR (2011) SPECT detectors: the anger camera and beyond. Phys Med Biol 56:R145–R182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rahmim A, Zaidi H (2008) PET versus SPECT: strengths, limitations and challenges. Nucl Med Commun 29:193–207

    Article  PubMed  Google Scholar 

  • Robilotta C (2004) Emission tomography: SPECT and PET. Computación Sistemas 7:167–174

    Google Scholar 

  • Rosenthal MS, Cullom J, Hawkins W, Moore SC, Tsui BM, Yester M (1995) Quantitative SPECT imaging: a review and recommendations by the Focus Committee of the Society of Nuclear Medicine Computer and Instrumentation Council. J Nucl Med 36:1489–1513

    CAS  PubMed  Google Scholar 

  • Rydberg J, Buckwalter KA, Caldemeyer KS, Phillips MD, Conces DJ Jr, Aisen AM, Persohn SA, Kopecky KK (2000) Multisection CT: scanning techniques and clinical applications. Radiographics 20:1787–1806

    Article  CAS  PubMed  Google Scholar 

  • Saha GB (2010) Instruments for radiation detection and measurements. In: Saha GB (ed) Fundamentals of nuclear pharmacy, 6th edn. Springer, New York, NY, pp 33–48

    Chapter  Google Scholar 

  • Seo Y, Mari C, Hasegawa BH (2008a) Technological development and advances in single-photon emission computed tomography/computed tomography. Semin Nucl Med 38:177–198

    Article  PubMed  PubMed Central  Google Scholar 

  • Seo Y, Teo BK, Hadi M, Schreck C, Bacharach SL, Hasegawa BH (2008b) Quantitative accuracy of PET/CT for image-based kinetic analysis. Med Phys 35:3086–3089

    Article  PubMed  PubMed Central  Google Scholar 

  • Shwartz SC, Ohana I (2003) SPECT gamma camera, USA, U.C.G. Technologies. US Patent US20030208117

    Google Scholar 

  • Tang J, Kuwabara H, Wong DF, Rahmim A (2010) Direct 4D reconstruction of parametric images incorporating anato-functional joint entropy. Phys Med Biol 55:4261–4272

    Article  PubMed  PubMed Central  Google Scholar 

  • Townsend DW (2004) Physical principles and technology of clinical PET imaging. Ann Acad Med Singapore 33:133–145

    CAS  PubMed  Google Scholar 

  • Trott CM, El Fakhri G (2008) Sequential and simultaneous dual-isotope brain SPECT: comparison with PET for estimation and discrimination tasks in early Parkinson disease. Med Phys 35:3343–3353

    Article  PubMed  PubMed Central  Google Scholar 

  • van Elmpt W, Hamill J, Jones J, De Ruysscher D, Lambin P, Ollers M (2011) Optimal gating compared to 3D and 4D PET reconstruction for characterization of lung tumours. Eur J Nucl Med Mol Imaging 38: 843–855

    Article  PubMed  PubMed Central  Google Scholar 

  • Wagenaar DJ, Zhang J, Kazules T, Vandehei T, Bolle E, Chowdhury S, Parnham K, Patt BE (2006) In vivo dual-isotope SPECT imaging with improved energy resolution. In: Conference Record IEEE Nuclear Science Symposium, San Diego, CA, pp 3821–3826

    Google Scholar 

  • Wang D, Sima M, Mosley RL, Davda JP, Tietze N, Miller SC, Gwilt PR, Kopeckova P, Kopecek J (2006) Pharmacokinetic and biodistribution studies of a bone-targeting drug delivery system based on N-(2-hydroxypropyl)methacrylamide copolymers. Mol Pharm 3:717–725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Warburg O (1956) On the origin of cancer cells. Science 123:309–314

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Lee Mosley Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Estes, K.A., Peterson, J.C., Szlachetka, A.M., Mosley, R.L. (2014). X-Ray, Positron Emission, and Single Photon Emission Tomographic Bioimaging. In: Xiong, H., Gendelman, H.E. (eds) Current Laboratory Methods in Neuroscience Research. Springer Protocols Handbooks. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8794-4_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8794-4_20

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8793-7

  • Online ISBN: 978-1-4614-8794-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics