Magnetic Resonance Imaging

  • Yutong LiuEmail author
Part of the Springer Protocols Handbooks book series (SPH)


Magnetic resonance imaging (MRI) is an essential tool in neuroscience investigations employing laboratory animals. In this chapter, the basic physics of nuclear magnetic resonance (NMR) signals are briefly described, followed by the principle of MRI formation and pulse sequences. MRI instrumentation is discussed including the necessary accessories for animal imaging. The focus of this chapter is the introduction of a variety of MRI techniques and their applications in neuroscience. The physiologic basis of MRI contrasts based on proton density and relaxation times (T1, T2, and T 2 * ) in tissue is first described, followed by their applications in neuroscience study. Advanced techniques, including diffusion and perfusion MRI, are then introduced. In diffusion MRI, diffusion-weighted imaging (DWI) is first described followed by diffusion tensor imaging (DTI). The physics, physiologic basis, and applications in neuroscience of these techniques are addressed respectively. There are two techniques in perfusion MRI: bolus tracking and arterial spin labeling. Both are introduced with a focus on bolus tracking technique. Functional MRI (fMRI) and its applications are presented. The stimulations used in fMRI are described, and resting state fMRI is also discussed. The possible pitfalls in fMRI applications are also addressed. The applications of exogenous contrast agents in MRI are also discussed, especially manganese-enhanced MRI (MEMRI) and in vivo cell tracking using superparamagnetic iron oxide (SPIO) particles.


MRI Relaxation time Pulse sequence Diffusion-weighted imaging (DWI) Diffusion tensor imaging (DTI) Perfusion MRI Functional MRI (fMRI) Manganese-enhanced MRI (MEMRI) Superparamagnetic iron oxide (SPIO) 


  1. Aggarwal M, Zhang J, Miller MI, Sidman RL, Mori S (2009) Magnetic resonance imaging and micro-computed tomography combined atlas of developing and adult mouse brains for stereotaxic surgery. Neuroscience 162:1339–1350CrossRefPubMedPubMedCentralGoogle Scholar
  2. Alexander GE, Chen K, Aschenbrenner M, Merkley TL, Santerre-Lemmon LE, Shamy JL, Skaggs WE, Buonocore MH, Rapp PR, Barnes CA (2008) Age-related regional network of magnetic resonance imaging gray matter in the rhesus macaque. J Neurosci 28:2710–2718CrossRefPubMedGoogle Scholar
  3. Aoki I, Tanaka C, Takegami T, Ebisu T, Umeda M, Fukunaga M, Fukuda K, Silva AC, Koretsky AP, Naruse S (2002) Dynamic activity-induced manganese-dependent contrast magnetic resonance imaging (DAIM MRI). Magn Reson Med 48:927–933CrossRefPubMedGoogle Scholar
  4. Baskerville TA, Deuchar GA, McCabe C, Robertson CA, Holmes WM, Santosh C, Macrae IM (2011) Influence of 100% and 40% oxygen on penumbral blood flow, oxygen level, and T2*-weighted MRI in a rat stroke model. J Cereb Blood Flow Metab 31:1799–1806CrossRefPubMedPubMedCentralGoogle Scholar
  5. Basser PJ, Pierpaoli C (1996) Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. J Magn Reson B 111:209–219CrossRefPubMedGoogle Scholar
  6. Basser PJ, Mattiello J, LeBihan D (1994a) MR diffusion tensor spectroscopy and imaging. Biophys J 66:259–267CrossRefPubMedPubMedCentralGoogle Scholar
  7. Basser PJ, Mattiello J, LeBihan D (1994b) Estimation of the effective self-diffusion tensor from the NMR spin echo. J Magn Reson B 103:247–254CrossRefPubMedGoogle Scholar
  8. Benveniste H, Ma Y, Dhawan J, Gifford A, Smith SD, Feinstein I, Du C, Grant SC, Hof PR (2007) Anatomical and functional phenotyping of mice models of Alzheimer’s disease by MR microscopy. Ann N Y Acad Sci 1097:12–29CrossRefPubMedGoogle Scholar
  9. Berry E, Bulpitt AJ (2009) Fundamentals of MRI: an interactive learning approach. CRC, Boca Raton, FLGoogle Scholar
  10. Biswal BB (2012) Resting state fMRI: a personal history. Neuroimage 62:938–944CrossRefPubMedGoogle Scholar
  11. Bock NA, Kovacevic N, Lipina TV, Roder JC, Ackerman SL, Henkelman RM (2006) In vivo magnetic resonance imaging and semiautomated image analysis extend the brain phenotype for cdf/cdf mice. J Neurosci 26:4455–4459CrossRefPubMedGoogle Scholar
  12. Borthakur A, Gur T, Wheaton AJ, Corbo M, Trojanowski JQ, Lee VM, Reddy R (2006) In vivo measurement of plaque burden in a mouse model of Alzheimer’s disease. J Magn Reson Imaging 24:1011–1017CrossRefPubMedPubMedCentralGoogle Scholar
  13. Boska MD, Mosley RL, Nawab M, Nelson JA, Zelivyanskaya M, Poluektova L, Uberti M, Dou H, Lewis TB, Gendelman HE (2004) Advances in neuroimaging for HIV-1 associated neurological dysfunction: clues to the diagnosis, pathogenesis and therapeutic monitoring. Curr HIV Res 2:61–78CrossRefPubMedGoogle Scholar
  14. Boska MD, Hasan KM, Kibuule D, Banerjee R, McIntyre E, Nelson JA, Hahn T, Gendelman HE, Mosley RL (2007) Quantitative diffusion tensor imaging detects dopaminergic neuronal degeneration in a murine model of Parkinson’s disease. Neurobiol Dis 26:590–596CrossRefPubMedPubMedCentralGoogle Scholar
  15. Braakman N, Matysik J, van Duinen SG, Verbeek F, Schliebs R, de Groot HJ, Alia A (2006) Longitudinal assessment of Alzheimer’s beta-amyloid plaque development in transgenic mice monitored by in vivo magnetic resonance microimaging. J Magn Reson Imaging 24:530–536CrossRefPubMedGoogle Scholar
  16. Brandt CT (2011) Experimental studies of pneumococcal meningitis. Dan Med Bull 57:B4119Google Scholar
  17. Bulte JW, Duncan ID, Frank JA (2002a) In vivo magnetic resonance tracking of magnetically labeled cells after transplantation. J Cereb Blood Flow Metab 22:899–907CrossRefPubMedGoogle Scholar
  18. Bulte JW, Zhang SC, van Gelderen P, Herynek V, Jordan EK, Janssen CH, Duncan ID, Frank JA (2002b) Magnetically labeled glial cells as cellular MR contrast agents. Acad Radiol 9(Suppl 1):S148–S150CrossRefPubMedGoogle Scholar
  19. Burgel U, Madler B, Honey CR, Thron A, Gilsbach J, Coenen VA (2009) Fiber tracking with distinct software tools results in a clear diversity in anatomical fiber tract portrayal. Cent Eur Neurosurg 70:27–35CrossRefPubMedGoogle Scholar
  20. Bushberg JT (2002) The essential physics of medical imaging, 2nd edn. Lippincott Williams & Wilkins, PhiladelphiaGoogle Scholar
  21. Carano RAD, Van Bruggen N, De Crespigny A (2003) MRI measurement of cerebral water diffusion and its application to experimental research. In: Van Bruggen N, Roberts T (eds) Biomedical imaging in experimental neuroscience. CRC, New York, pp 55–92Google Scholar
  22. Chen B, Song AW (2008) Diffusion tensor imaging fiber tracking with local tissue property sensitivity: phantom and in vivo validation. Magn Reson Imaging 26:103–108CrossRefPubMedGoogle Scholar
  23. Cho ZH, Jones JP, Singh M (1993) Foundations of medical imaging. Wiley, New YorkGoogle Scholar
  24. Chuang N, Mori S, Yamamoto A, Jiang H, Ye X, Xu X, Richards LJ, Nathans J, Miller MI, Toga AW, Sidman RL, Zhang J (2011) An MRI-based atlas and database of the developing mouse brain. Neuroimage 54:80–89CrossRefPubMedGoogle Scholar
  25. Dash PK, Gorantla S, Gendelman HE, Knibbe J, Casale GP, Makarov E, Epstein AA, Gelbard HA, Boska MD, Poluektova LY (2011) Loss of neuronal integrity during progressive HIV-1 infection of humanized mice. J Neurosci 31:3148–3157CrossRefPubMedPubMedCentralGoogle Scholar
  26. Dazai J, Spring S, Cahill LS, Henkelman RM (2011) Multiple-mouse neuroanatomical magnetic resonance imaging. J Vis Exp 2011(48): 2497Google Scholar
  27. Dhenain M, Delatour B, Walczak C, Volk A (2006) Passive staining: a novel ex vivo MRI protocol to detect amyloid deposits in mouse models of Alzheimer’s disease. Magn Reson Med 55:687–693CrossRefPubMedGoogle Scholar
  28. Dijkhuizen RM (2006) Application of magnetic resonance imaging to study pathophysiology in brain disease models. Methods Mol Med 124:251–278PubMedGoogle Scholar
  29. Dijkhuizen RM, Nicolay K (2003) Magnetic resonance imaging in experimental models of brain disorders. J Cereb Blood Flow Metab 23:1383–1402CrossRefPubMedGoogle Scholar
  30. Dixon WT, Du LN, Faul DD, Gado M, Rossnick S (1986) Projection angiograms of blood labeled by adiabatic fast passage. Magn Reson Med 3:454–462CrossRefPubMedGoogle Scholar
  31. Dubois J, Hertz-Pannier L, Dehaene-Lambertz G, Cointepas Y, Le Bihan D (2006) Assessment of the early organization and maturation of infants’ cerebral white matter fiber bundles: a feasibility study using quantitative diffusion tensor imaging and tractography. Neuroimage 30:1121–1132CrossRefPubMedGoogle Scholar
  32. Durukan A, Tatlisumak T (2009) Ischemic stroke in mice and rats. Methods Mol Biol 573:95–114CrossRefPubMedGoogle Scholar
  33. Faber C, Zahneisen B, Tippmann F, Schroeder A, Fahrenholz F (2007) Gradient-echo and CRAZED imaging for minute detection of Alzheimer plaques in an APPV717I × ADAM10-dn mouse model. Magn Reson Med 57:696–703CrossRefPubMedGoogle Scholar
  34. Falangola MF, Dyakin VV, Lee SP, Bogart A, Babb JS, Duff K, Nixon R, Helpern JA (2007) Quantitative MRI reveals aging-associated T2 changes in mouse models of Alzheimer’s disease. NMR Biomed 20:343–351CrossRefPubMedGoogle Scholar
  35. Gao H, Liu Y, Lu S, Xiang B, Wang C (2006) A reversible middle cerebral artery occlusion model using intraluminal balloon technique in monkeys. J Stroke Cerebrovasc Dis 15:202–208CrossRefPubMedGoogle Scholar
  36. Grunecker B, Kaltwasser SF, Peterse Y, Samann PG, Schmidt MV, Wotjak CT, Czisch M (2011) Fractionated manganese injections: effects on MRI contrast enhancement and physiological measures in C57BL/6 mice. NMR Biomed 23:913–921CrossRefGoogle Scholar
  37. Guo J, Zheng HB, Duan JC, He L, Chen N, Gong QY, Tang HH, Li HX, Wang L, Cheng JQ (2011) Diffusion tensor MRI for the assessment of cerebral ischemia/reperfusion injury in the penumbra of non-human primate stroke model. Neurol Res 33:108–112CrossRefPubMedGoogle Scholar
  38. Haacke EM (1999) Magnetic resonance imaging: physical principles and sequence design. Wiley, New YorkGoogle Scholar
  39. Hornak JP The Basics of MRI. Scholar
  40. Jack CR Jr, Marjanska M, Wengenack TM, Reyes DA, Curran GL, Lin J, Preboske GM, Poduslo JF, Garwood M (2007) Magnetic resonance imaging of Alzheimer’s pathology in the brains of living transgenic mice: a new tool in Alzheimer’s disease research. Neuroscientist 13:38–48CrossRefPubMedGoogle Scholar
  41. Jian B, Vemuri BC, Ozarslan E, Carney PR, Mareci TH (2007) A novel tensor distribution model for the diffusion-weighted MR signal. Neuroimage 37:164–176CrossRefPubMedPubMedCentralGoogle Scholar
  42. Jiao F, Phillips JM, Stinstra J, Krger J, Varma R, Hsu E (2011) Metrics for uncertainty analysis and visualization of diffusion tensor images. Lect Notes Comput Sci 6326(2010):179–190Google Scholar
  43. Justicia C, Ramos-Cabrer P, Hoehn M (2008) MRI detection of secondary damage after stroke: chronic iron accumulation in the thalamus of the rat brain. Stroke 39:1541–1547CrossRefPubMedGoogle Scholar
  44. Kim SG (1995) Quantification of relative cerebral blood flow change by flow-sensitive alternating inversion recovery (FAIR) technique: application to functional mapping. Magn Reson Med 34:293–301CrossRefPubMedGoogle Scholar
  45. Kondoh T, Bannai M, Nishino H, Torii K (2005) 6-Hydroxydopamine-induced lesions in a rat model of hemi-Parkinson’s disease monitored by magnetic resonance imaging. Exp Neurol 192:194–202CrossRefPubMedGoogle Scholar
  46. Lau JC, Lerch JP, Sled JG, Henkelman RM, Evans AC, Bedell BJ (2008) Longitudinal neuroanatomical changes determined by deformation-based morphometry in a mouse model of Alzheimer’s disease. Neuroimage 42:19–27CrossRefPubMedGoogle Scholar
  47. Laurent S, Bridot JL, Elst LV, Muller RN (2010) Magnetic iron oxide nanoparticles for biomedical applications. Future Med Chem 2:427–449CrossRefPubMedGoogle Scholar
  48. Lebenberg J, Herard AS, Dubois A, Dauguet J, Frouin V, Dhenain M, Hantraye P, Delzescaux T (2011) Validation of MRI-based 3D digital atlas registration with histological and autoradiographic volumes: an anatomofunctional transgenic mouse brain imaging study. Neuroimage 51:1037–1046CrossRefGoogle Scholar
  49. Liu Y, D’Arceuil H, He J, Duggan M, Seri S, Hashiguchi Y, Nakatani A, Gonzalez RG, Pryor J, de Crespigny A (2005) Dynamic susceptibility contrast perfusion imaging of cerebral ischemia in nonhuman primates: comparison of Gd-DTPA and NMS60. J Magn Reson Imaging 22:461–466CrossRefPubMedGoogle Scholar
  50. Liu Y, Karonen JO, Nuutinen J, Vanninen E, Kuikka JT, Vanninen RL (2007a) Crossed cerebellar diaschisis in acute ischemic stroke: a study with serial SPECT and MRI. J Cereb Blood Flow Metab 27:1724–1732CrossRefPubMedGoogle Scholar
  51. Liu Y, D’Arceuil H, He J, Duggan M, Gonzalez G, Pryor J, de Crespigny A (2007b) MRI of spontaneous fluctuations after acute cerebral ischemia in nonhuman primates. J Magn Reson Imaging 26:1112–1116CrossRefPubMedGoogle Scholar
  52. Liu Y, D’Arceuil HE, Westmoreland S, He J, Duggan M, Gonzalez RG, Pryor J, de Crespigny AJ (2007c) Serial diffusion tensor MRI after transient and permanent cerebral ischemia in nonhuman primates. Stroke 38:138–145CrossRefPubMedGoogle Scholar
  53. Liu Y, Uberti MG, Dou H, Banerjee R, Grotepas CB, Stone DK, Rabinow BE, Gendelman HE, Boska MD (2008) Ingress of blood-borne macrophages across the blood–brain barrier in murine HIV-1 encephalitis. J Neuroimmunol 200:41–52CrossRefPubMedPubMedCentralGoogle Scholar
  54. Lori NF, Akbudak E, Shimony JS, Cull TS, Snyder AZ, Guillory RK, Conturo TE (2002) Diffusion tensor fiber tracking of human brain connectivity: acquisition methods, reliability analysis and biological results. NMR Biomed 15:494–515CrossRefPubMedGoogle Scholar
  55. Luo F, Seifert TR, Edalji R, Loebbert RW, Hradil VP, Harlan J, Schmidt M, Nimmrich V, Cox BF, Fox GB (2008) Non-invasive characterization of beta-amyloid(1–40) vasoactivity by functional magnetic resonance imaging in mice. Neuroscience 155:263–269CrossRefPubMedGoogle Scholar
  56. Lythgoe MF, Sibson NR, Harris NG (2003) Neuroimaging of animal models of brain disease. Br Med Bull 65:235–257CrossRefPubMedGoogle Scholar
  57. Masamoto K, Kanno I (2012) Anesthesia and the quantitative evaluation of neurovascular coupling. J Cereb Blood Flow Metab 32:1233–1247CrossRefPubMedPubMedCentralGoogle Scholar
  58. Mishra A, Anderson AW, Wu X, Gore JC, Ding Z (2011) An improved Bayesian tensor regularization and sampling algorithm to track neuronal fiber pathways in the language circuit. Med Phys 37:4274–4287CrossRefGoogle Scholar
  59. Moseley ME, Kucharczyk J, Mintorovitch J, Cohen Y, Kurhanewicz J, Derugin N, Asgari H, Norman D (1990) Diffusion-weighted MR imaging of acute stroke: correlation with T2-weighted and magnetic susceptibility-enhanced MR imaging in cats. AJNR Am J Neuroradiol 11:423–429PubMedGoogle Scholar
  60. Nagaraja TN, Ewing JR, Karki K, Jacobs PE, Divine GW, Fenstermacher JD, Patlak CS, Knight RA (2011) MRI and quantitative autoradiographic studies following bolus injections of unlabeled and (14)C-labeled gadolinium-diethylenetriaminepentaacetic acid in a rat model of stroke yield similar distribution volumes and blood-to-brain influx rate constants. NMR Biomed 24:547–558CrossRefPubMedGoogle Scholar
  61. Nelson JA, Dou H, Ellison B, Uberti M, Xiong H, Anderson E, Mellon M, Gelbard HA, Boska M, Gendelman HE (2005) Coregistration of quantitative proton magnetic resonance spectroscopic imaging with neuropathological and neurophysiological analyses defines the extent of neuronal impairments in murine human immunodeficiency virus type-1 encephalitis. J Neurosci Res 80:562–575CrossRefPubMedGoogle Scholar
  62. Norman AB, Thomas SR, Pratt RG, Lu SY, Norgren RB (1992) Magnetic resonance imaging of neural transplants in rat brain using a superparamagnetic contrast agent. Brain Res 594:279–283CrossRefPubMedGoogle Scholar
  63. Ogawa S, Lee TM, Kay AR, Tank DW (1990) Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci U S A 87:9868–9872CrossRefPubMedPubMedCentralGoogle Scholar
  64. Pautler RG, Silva AC, Koretsky AP (1998) In vivo neuronal tract tracing using manganese-enhanced magnetic resonance imaging. Magn Reson Med 40:740–748CrossRefPubMedGoogle Scholar
  65. Pelled G, Bergman H, Ben-Hur T, Goelman G (2005) Reduced basal activity and increased functional homogeneity in sensorimotor and striatum of a Parkinson’s disease rat model: a functional MRI study. Eur J Neurosci 21:2227–2232CrossRefPubMedGoogle Scholar
  66. Pelled G, Bergman H, Ben-Hur T, Goelman G (2007) Manganese-enhanced MRI in a rat model of Parkinson’s disease. J Magn Reson Imaging 26:863–870CrossRefPubMedGoogle Scholar
  67. Pirko I, Johnson AJ (2008) Neuroimaging of demyelination and remyelination models. Curr Top Microbiol Immunol 318:241–266PubMedGoogle Scholar
  68. Podell M, Hadjiconstantinou M, Smith MA, Neff NH (2003) Proton magnetic resonance imaging and spectroscopy identify metabolic changes in the striatum in the MPTP feline model of parkinsonism. Exp Neurol 179:159–166CrossRefPubMedGoogle Scholar
  69. Poduslo JF, Ramakrishnan M, Holasek SS, Ramirez-Alvarado M, Kandimalla KK, Gilles EJ, Curran GL, Wengenack TM (2007) In vivo targeting of antibody fragments to the nervous system for Alzheimer’s disease immunotherapy and molecular imaging of amyloid plaques. J Neurochem 102:420–433CrossRefPubMedGoogle Scholar
  70. Price G, Cercignani M, Parker GJ, Altmann DR, Barnes TR, Barker GJ, Joyce EM, Ron MA (2007) Abnormal brain connectivity in first-episode psychosis: a diffusion MRI tractography study of the corpus callosum. Neuroimage 35:458–466CrossRefPubMedPubMedCentralGoogle Scholar
  71. Ramakrishnan M, Wengenack TM, Kandimalla KK, Curran GL, Gilles EJ, Ramirez-Alvarado M, Lin J, Garwood M, Jack CR Jr, Poduslo JF (2008) Selective contrast enhancement of individual Alzheimer’s disease amyloid plaques using a polyamine and Gd-DOTA conjugated antibody fragment against fibrillar Abeta42 for magnetic resonance molecular imaging. Pharm Res 25:1861–1872CrossRefPubMedPubMedCentralGoogle Scholar
  72. Rosazza C, Minati L (2011) Resting-state brain networks: literature review and clinical applications. Neurol Sci 32:773–785CrossRefPubMedGoogle Scholar
  73. Smith KD, Kallhoff V, Zheng H, Pautler RG (2007) In vivo axonal transport rates decrease in a mouse model of Alzheimer’s disease. Neuroimage 35:1401–1408CrossRefPubMedPubMedCentralGoogle Scholar
  74. Strome EM, Doudet DJ (2007) Animal models of neurodegenerative disease: insights from in vivo imaging studies. Mol Imaging Biol 9:186–195CrossRefPubMedGoogle Scholar
  75. Szafer A, Zhong J, Anderson AW, Gore JC (1995) Diffusion-weighted imaging in tissues: theoretical models. NMR Biomed 8:289–296CrossRefPubMedGoogle Scholar
  76. Ullmann JF, Cowin G, Kurniawan ND, Collin SP (2010) Magnetic resonance histology of the adult zebrafish brain: optimization of fixation and gadolinium contrast enhancement. NMR Biomed 23:341–346PubMedGoogle Scholar
  77. Uppal R, Ay I, Dai G, Kim YR, Sorensen AG, Caravan P (2010) Molecular MRI of intracranial thrombus in a rat ischemic stroke model. Stroke 41:1271–1277CrossRefPubMedPubMedCentralGoogle Scholar
  78. Van Bruggen N, Roberts T (2003) Biomedical imaging in experimental neuroscience. CRC, Boca Raton, FLGoogle Scholar
  79. Van der Linden A, Van Meir V, Boumans T, Poirier C, Balthazart J (2009) MRI in small brains displaying extensive plasticity. Trends Neurosci 32:257–266CrossRefPubMedGoogle Scholar
  80. Villringer A, Rosen BR, Belliveau JW, Ackerman JL, Lauffer RB, Buxton RB, Chao YS, Wedeen VJ, Brady TJ (1988) Dynamic imaging with lanthanide chelates in normal brain: contrast due to magnetic susceptibility effects. Magn Reson Med 6:164–174CrossRefPubMedGoogle Scholar
  81. Wang HH, Menezes NM, Zhu MW, Ay H, Koroshetz WJ, Aronen HJ, Karonen JO, Liu Y, Nuutinen J, Wald LL, Sorensen AG (2008) Physiological noise in MR images: an indicator of the tissue response to ischemia? J Magn Reson Imaging 27:866–871CrossRefPubMedGoogle Scholar
  82. Webb AR (2003) Introduction to biomedical imaging. Wiley, Hoboken, NJGoogle Scholar
  83. Wengenack TM, Jack CR Jr, Garwood M, Poduslo JF (2008) MR microimaging of amyloid plaques in Alzheimer’s disease transgenic mice. Eur J Nucl Med Mol Imaging 35(Suppl 1):S82–S88CrossRefPubMedGoogle Scholar
  84. Winkeler A, Waerzeggers Y, Klose A, Monfared P, Thomas AV, Schubert M, Heneka MT, Jacobs AH (2008) Imaging noradrenergic influence on amyloid pathology in mouse models of Alzheimer’s disease. Eur J Nucl Med Mol Imaging 35(Suppl 1):S107–S113CrossRefPubMedGoogle Scholar
  85. Zalesky A, Fornito A (2009) A DTI-derived measure of cortico-cortical connectivity. IEEE Trans Med Imaging 28:1023–1036CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Departments of Radiology and Pharmacology and Experimental NeuroscienceUniversity of Nebraska Medical CenterOmahaUSA

Personalised recommendations