Confocal Imaging of Nerve Cells

  • You ZhouEmail author
Part of the Springer Protocols Handbooks book series (SPH)


Confocal laser scanning microscopy has been widely utilized for real-time, cytochemical, or immunofluorescence image analysis in many studies using various types of biological samples. Recently developed fluorophores and fluorescent proteins with higher fluorescence intensities in narrower ranges of excitation and emission wavelengths give researchers more choices for selections of fluorescent tags and labeling combinations. This chapter provides brief introduction of confocal microscopy, autofluorescence with focus on aging brains, signal and noise ratio, and common fluorophore selections/combinations. In addition, this paper describes general procedures for confocal image analysis using live cells or fixed samples, using examples for (1) real-time imaging analysis of intracellular ROS response of Neuro-2A cells to specific treatments and (2) triple-labeling immunofluorescence confocal microscopy using mouse brain sections.


Autofluorescence Confocal laser scanning microscopy Fluorophores and fluorescent proteins selection Immunofluorescence labeling Nerve cells Real-time imaging Signal-noise ratio 


  1. Beisker W, Dolbeare F, Gray JW (1987) An improved immunocytochemical procedure for high-sensitivity detection of incorporated bromodeoxyuridine. Cytometry 8:235–239CrossRefPubMedGoogle Scholar
  2. Brehmer A, Blaser B, Seitz G, Schrodl F, Neuhuber W (2004) Pattern of lipofuscin pigmentation in nitrergic and non-nitrergic, neurofilament immunoreactive myenteric neuron types of human small intestine. Histochem Cell Biol 121:13–20CrossRefPubMedGoogle Scholar
  3. Carter D (1999) Practical considerations for collecting confocal images. Methods Mol Biol 122:35–57PubMedGoogle Scholar
  4. Chen KC, Zhou Y, Zhang W, Lou MF (2007) Control of PDGF-induced reactive oxygen species (ROS) generation and signal transduction in human lens epithelial cells. Mol Vis 13:374–387PubMedPubMedCentralGoogle Scholar
  5. Chidlow G, Daymon M, Wood JP, Casson RJ (2011) Localization of a wide-ranging panel of antigens in the rat retina by immunohistochemistry: comparison of Davidson’s solution and formalin as fixatives. J Histochem Cytochem 59:884–898CrossRefPubMedPubMedCentralGoogle Scholar
  6. Double KL, Dedov VN, Fedorow H, Kettle E, Halliday GM, Garner B, Brunk UT (2008) The comparative biology of neuromelanin and lipofuscin in the human brain. Cell Mol Life Sci 65:1669–1682CrossRefPubMedGoogle Scholar
  7. Dunaevsky A (2012) Neuron-glial interactions in the developing cerebellum. Microsc Microanal 18:742–744CrossRefPubMedPubMedCentralGoogle Scholar
  8. Eichhoff G, Busche MA, Garaschuk O (2008) In vivo calcium imaging of the aging and diseased brain. Eur J Nucl Med Mol Imaging 35(Suppl 1):S99–S106CrossRefPubMedGoogle Scholar
  9. Elleder M, Borovansky J (2001) Autofluorescence of melanins induced by ultraviolet radiation and near ultraviolet light. A histochemical and biochemical study. Histochem J 33:273–281CrossRefPubMedGoogle Scholar
  10. Garini Y, Young IT, McNamara G (2006) Spectral imaging: principles and applications. Cytometry A 69:735–747CrossRefPubMedGoogle Scholar
  11. Giepmans BN, Adams SR, Ellisman MH, Tsien RY (2006) The fluorescent toolbox for assessing protein location and function. Science 312:217–224CrossRefPubMedGoogle Scholar
  12. Herberich G, Windoffer R, Leube RE, Aach T (2012) Signal and noise modeling in confocal laser scanning fluorescence microscopy. Med Image Comput Comput Assist Interv 15:381–388PubMedGoogle Scholar
  13. Koistinaho J, Sorvaniemi M, Alho H, Hervonen A (1986) Microspectrofluorometric quantitation of autofluorescent lipopigment in the human sympathetic ganglia. Mech Ageing Dev 37:79–89CrossRefPubMedGoogle Scholar
  14. Kremers GJ, Gilbert SG, Cranfill PJ, Davidson MW, Piston DW (2011) Fluorescent proteins at a glance. J Cell Sci 124:157–160CrossRefPubMedGoogle Scholar
  15. Lam AJ, St-Pierre F, Gong Y, Marshall JD, Cranfill PJ, Baird MA, McKeown MR, Wiedenmann J, Davidson MW, Schnitzer MJ, Tsien RY, Lin MZ (2012) Improving FRET dynamic range with bright green and red fluorescent proteins. Nat Methods 9:1005–1012CrossRefPubMedPubMedCentralGoogle Scholar
  16. Lippincott-Schwartz J, Patterson GH (2003) Development and use of fluorescent protein markers in living cells. Science 300:87–91CrossRefPubMedGoogle Scholar
  17. Malinouski M, Zhou Y, Belousov VV, Hatfield DL, Gladyshev VN (2011) Hydrogen peroxide probes directed to different cellular compartments. PLoS One 6:e14564CrossRefPubMedPubMedCentralGoogle Scholar
  18. Matsuda Y, Fujii T, Suzuki T, Yamahatsu K, Kawahara K, Teduka K, Kawamoto Y, Yamamoto T, Ishiwata T, Naito Z (2011) Comparison of fixation methods for preservation of morphology, RNAs, and proteins from paraffin-embedded human cancer cell-implanted mouse models. J Histochem Cytochem 59:68–75CrossRefPubMedPubMedCentralGoogle Scholar
  19. Murray JM, Appleton PL, Swedlow JR, Waters JC (2007) Evaluating performance in three-dimensional fluorescence microscopy. J Microsc 228:390–405CrossRefPubMedPubMedCentralGoogle Scholar
  20. Paddock SW (1999a) An introduction to confocal imaging. Methods Mol Biol 122:1–34PubMedGoogle Scholar
  21. Paddock SW (1999b) Confocal laser scanning microscopy. Biotechniques 27:992–996, 998–1002, 1004Google Scholar
  22. Pawley JB (2002) Limitations on optical sectioning in live-cell confocal microscopy. Scanning 24:241–246CrossRefPubMedGoogle Scholar
  23. Peng H, Whitney N, Wu Y, Tian C, Dou H, Zhou Y, Zheng J (2008) HIV-1-infected and/or immune-activated macrophage-secreted TNF-alpha affects human fetal cortical neural progenitor cell proliferation and differentiation. Glia 56:903–916CrossRefPubMedPubMedCentralGoogle Scholar
  24. Rizzo MA, Davidson MW, Piston DW (2009) Fluorescent protein tracking and detection: applications using fluorescent proteins in living cells. Cold Spring Harb Protoc 2009:pdb top64Google Scholar
  25. Schnell SA, Staines WA, Wessendorf MW (1999) Reduction of lipofuscin-like autofluorescence in fluorescently labeled tissue. J Histochem Cytochem 47:719–730CrossRefPubMedGoogle Scholar
  26. Selever J, Kong JQ, Arenkiel BR (2011) A rapid approach to high-resolution fluorescence imaging in semi-thick brain slices. J Vis Exp Jul 26(53):2807Google Scholar
  27. Shapiro RA, Farrell L, Srinivasan M, Curthoys NP (1991) Isolation, characterization, and in vitro expression of a cDNA that encodes the kidney isoenzyme of the mitochondrial glutaminase. J Biol Chem 266:18792–18796PubMedGoogle Scholar
  28. Svoboda K, Yasuda R (2006) Principles of two-photon excitation microscopy and its applications to neuroscience. Neuron 50:823–839CrossRefPubMedGoogle Scholar
  29. Swedlow JR (2012) Innovation in biological microscopy: current status and future directions. Bioessays 34:333–340CrossRefPubMedPubMedCentralGoogle Scholar
  30. Tian C, Sun L, Jia B, Ma K, Curthoys N, Ding J, Zheng J (2012) Mitochondrial glutaminase release contributes to glutamate-mediated neurotoxicity during human immunodeficiency virus-1 infection. J Neuroimmune Pharmacol 7:619–628CrossRefPubMedPubMedCentralGoogle Scholar
  31. Tsien RY, Ernst L, Waggoner A (2006) Chapter 16: Fluorophores for confocal microscopy: photophysics and photochemistry, 3rd edn. Springer, New YorkGoogle Scholar
  32. Viegas MS, Martins TC, Seco F, do Carmo A (2007) An improved and cost-effective methodology for the reduction of autofluorescence in direct immunofluorescence studies on formalin-fixed paraffin-embedded tissues. Eur J Histochem 51:59–66PubMedGoogle Scholar
  33. Waters JC (2007) Live-cell fluorescence imaging. Methods Cell Biol 81:115–140CrossRefPubMedGoogle Scholar
  34. Yao PJ, O’Herron TM, Coleman PD (2003) Immunohistochemical characterization of clathrin assembly protein AP180 and synaptophysin in human brain. Neurobiol Aging 24:173–178CrossRefPubMedGoogle Scholar
  35. Zecca L, Bellei C, Costi P, Albertini A, Monzani E, Casella L, Gallorini M, Bergamaschi L, Moscatelli A, Turro NJ, Eisner M, Crippa PR, Ito S, Wakamatsu K, Bush WD, Ward WC, Simon JD, Zucca FA (2008) New melanic pigments in the human brain that accumulate in aging and block environmental toxic metals. Proc Natl Acad Sci U S A 105:17567–17572CrossRefPubMedPubMedCentralGoogle Scholar
  36. Zhang Y, Zhou Y, Schweizer U, Savaskan NE, Hua D, Kipnis J, Hatfield DL, Gladyshev VN (2008) Comparative analysis of selenocysteine machinery and selenoproteome gene expression in mouse brain identifies neurons as key functional sites of selenium in mammals. J Biol Chem 283:2427–2438CrossRefPubMedGoogle Scholar
  37. Zhou Y, Marcus EM, Haugland RP, Opas M (1995) Use of a new fluorescent probe, seminaphthofluorescein-calcein, for determination of intracellular pH by simultaneous dual-emission imaging laser scanning confocal microscopy. J Cell Physiol 164:9–16CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Center for Biotechnology and School of Veterinary Medicine & Biomedical SciencesUniversity of Nebraska-LincolnLincolnUSA

Personalised recommendations