Advertisement

Neuronanomedicine

  • JoEllyn M. McMillan
  • Xin-Ming Liu
  • Howard E. GendelmanEmail author
Protocol
  • 3.9k Downloads
Part of the Springer Protocols Handbooks book series (SPH)

Abstract

The need for the development of nanomedicines for the treatment of human immunodeficiency viral (HIV) infections is urgent and immediate. To this end, our laboratories have devised the means to utilize mononuclear phagocytes as nanoparticle carriers. Drug nanocarriers are specifically relevant to the central nervous system as they can target sites of inflammation including those contained within a diseased brain and enhance therapeutic efficacy. Nonetheless and despite the promise for HIV infections, nanomedicines have yet to make their mark. This, we posit, will change as translation of nanoformulation technology for clinical therapeutic applications shows its complete potential. This chapter reviews the promise of this technology and outlines in clear form the methods for manufacturing and testing the particles. Such works will have broad applicability beyond viral infections of the nervous system and are particularly relevant for this book series.

Keywords

Nanoparticles HIV Antiretroviral therapeutics NanoART Cell-based drug delivery Macrophages 

References

  1. Batrakova EV, Gendelman HE, Kabanov AV (2011) Cell-mediated drug delivery. Expert Opin Drug Deliv 8:415–433CrossRefPubMedPubMedCentralGoogle Scholar
  2. Bressani RF, Nowacek AS, Singh S, Balkundi S, Rabinow B, McMillan J, Gendelman HE, Kanmogne GD (2011) Pharmacotoxicology of monocyte-macrophage nanoformulated antiretroviral drug uptake and carriage. Nanotoxicology 5:592–605CrossRefPubMedGoogle Scholar
  3. d’Ettorre G, Paiardini M, Ceccarelli G, Silvestri G, Vullo V (2011) HIV-associated immune activation: from bench to bedside. AIDS Res Hum Retroviruses 27:355–364CrossRefPubMedGoogle Scholar
  4. Dash PK, Gendelman HE, Roy U, Balkundi S, Alnouti Y, Mosley RL, Gelbard HA, McMillan J, Gorantla S, Poluektova LY (2012) Long-acting nanoformulated antiretroviral therapy elicits potent antiretroviral and neuroprotective responses in HIV-1-infected humanized mice. AIDS 26:2135–2144CrossRefPubMedPubMedCentralGoogle Scholar
  5. de Vries HE, Kuiper J, de Boer AG, Van Berkel TJ, Breimer DD (1997) The blood–brain barrier in neuroinflammatory diseases. Pharmacol Rev 49:143–155PubMedGoogle Scholar
  6. de Vries HE, Kooij G, Frenkel D, Georgopoulos S, Monsonego A, Janigro D (2012) Inflammatory events at blood–brain barrier in neuroinflammatory and neurodegenerative disorders: implications for clinical disease. Epilepsia 53(Suppl 6):45–52CrossRefPubMedPubMedCentralGoogle Scholar
  7. Doitsh G, Cavrois M, Lassen KG, Zepeda O, Yang Z, Santiago ML, Hebbeler AM, Greene WC (2010) Abortive HIV infection mediates CD4 T cell depletion and inflammation in human lymphoid tissue. Cell 143:789–801CrossRefPubMedPubMedCentralGoogle Scholar
  8. Dou H, Destache CJ, Morehead JR, Mosley RL, Boska MD, Kingsley J, Gorantla S, Poluektova L, Nelson JA, Chaubal M, Werling J, Kipp J, Rabinow BE, Gendelman HE (2006) Development of a macrophage-based nanoparticle platform for antiretroviral drug delivery. Blood 108:2827–2835CrossRefPubMedPubMedCentralGoogle Scholar
  9. Dou H, Grotepas CB, McMillan JM, Destache CJ, Chaubal M, Werling J, Kipp J, Rabinow B, Gendelman HE (2009) Macrophage delivery of nanoformulated antiretroviral drug to the brain in a murine model of neuroAIDS. J Immunol 183:661–669CrossRefPubMedPubMedCentralGoogle Scholar
  10. Epstein AA, Narayanasamy P, Dash PK, High R, Bathena SP, Gorantla S, Poluektova LY, Alnouti Y, Gendelman HE, Boska MD (2013) Combinatorial assessments of brain tissue metabolomics and histopathology in rodent models of human immunodeficiency virus infection. J Neuroimmune Pharmacol, In PressGoogle Scholar
  11. Frank-Cannon TC, Alto LT, McAlpine FE, Tansey MG (2009) Does neuroinflammation fan the flame in neurodegenerative diseases? Mol Neurodegener 4:47CrossRefPubMedPubMedCentralGoogle Scholar
  12. Gautam N, Roy U, Balkundi S, Puligujja P, Guo D, Smith N, Liu XM, Lamberty B, Morsey B, Fox HS, McMillan J, Gendelman HE, Alnouti Y (2013) Preclinical pharmacokinetics and tissue distribution of long-acting nanoformulated antiretroviral therapy. Antimicrob Agents Chemother 57(7):3110–3120CrossRefPubMedPubMedCentralGoogle Scholar
  13. Graves D, Vernino S (2012) Immunotherapies in neurologic disorders. Med Clin North Am 96:497–523, xGoogle Scholar
  14. Huang J, Gautam N, Bathena SP, Roy U, McMillan J, Gendelman HE, Alnouti Y (2011) UPLC-MS/MS quantification of nanoformulated ritonavir, indinavir, atazanavir, and efavirenz in mouse serum and tissues. J Chromatogr B Analyt Technol Biomed Life Sci 879:2332–2338CrossRefPubMedPubMedCentralGoogle Scholar
  15. Kadiu I, Nowacek A, McMillan J, Gendelman HE (2011) Macrophage endocytic trafficking of antiretroviral nanoparticles. Nanomedicine (Lond) 6:975–994CrossRefGoogle Scholar
  16. Kanmogne GD, Singh S, Roy U, Liu X, McMillan J, Gorantla S, Balkundi S, Smith N, Alnouti Y, Gautam N, Zhou Y, Poluektova L, Kabanov A, Bronich T, Gendelman HE (2012) Mononuclear phagocyte intercellular crosstalk facilitates transmission of cell-targeted nanoformulated antiretroviral drugs to human brain endothelial cells. Int J Nanomedicine 7:2373–2388CrossRefPubMedPubMedCentralGoogle Scholar
  17. Kanwar JR, Sriramoju B, Kanwar RK (2012) Neurological disorders and therapeutics targeted to surmount the blood–brain barrier. Int J Nanomedicine 7:3259–3278CrossRefPubMedPubMedCentralGoogle Scholar
  18. Kim BY, Rutka JT, Chan WC (2010) Nanomedicine. N Engl J Med 363:2434–2443CrossRefPubMedGoogle Scholar
  19. Mahajan SD, Aalinkeel R, Law WC, Reynolds JL, Nair BB, Sykes DE, Yong KT, Roy I, Prasad PN, Schwartz SA (2012) Anti-HIV-1 nanotherapeutics: promises and challenges for the future. Int J Nanomedicine 7:5301–5314CrossRefPubMedPubMedCentralGoogle Scholar
  20. Martinez-Skinner AL, Veerubhotla RS, Liu H, Xiong H, Yu F, McMillan JM, Gendelman HE (2013) Functional proteome of macrophage carried nanoformulated antiretroviral therapy demonstrates enhanced particle carrying capacity. J Proteome Res 12:2282–2294CrossRefPubMedPubMedCentralGoogle Scholar
  21. McMillan J, Batrakova E, Gendelman HE (2011) Cell delivery of therapeutic nanoparticles. Prog Mol Biol Transl Sci 104:563–601CrossRefPubMedPubMedCentralGoogle Scholar
  22. Mosser DM (2003) The many faces of macrophage activation. J Leukoc Biol 73:209–212CrossRefPubMedGoogle Scholar
  23. Mosser DM, Edwards JP (2008) Exploring the full spectrum of macrophage activation. Nat Rev Immunol 8:958–969CrossRefPubMedPubMedCentralGoogle Scholar
  24. Nischang M, Sutmuller R, Gers-Huber G, Audige A, Li D, Rochat MA, Baenziger S, Hofer U, Schlaepfer E, Regenass S, Amssoms K, Stoops B, Van Cauwenberge A, Boden D, Kraus G, Speck RF (2012) Humanized mice recapitulate key features of HIV-1 infection: a novel concept using long-acting anti-retroviral drugs for treating HIV-1. PLoS One 7:e38853CrossRefPubMedPubMedCentralGoogle Scholar
  25. Nowacek AS, Miller RL, McMillan J, Kanmogne G, Kanmogne M, Mosley RL, Ma Z, Graham S, Chaubal M, Werling J, Rabinow B, Dou H, Gendelman HE (2009) NanoART synthesis, characterization, uptake, release and toxicology for human monocyte-macrophage drug delivery. Nanomedicine (Lond) 4:903–917CrossRefGoogle Scholar
  26. Nowacek AS, Balkundi S, McMillan J, Roy U, Martinez-Skinner A, Mosley RL, Kanmogne G, Kabanov AV, Bronich T, Gendelman HE (2011) Analyses of nanoformulated antiretroviral drug charge, size, shape and content for uptake, drug release and antiviral activities in human monocyte-derived macrophages. J Control Release 150:204–211CrossRefPubMedGoogle Scholar
  27. O’Callaghan JP, Sriram K, Miller DB (2008) Defining “neuroinflammation”. Ann N Y Acad Sci 1139:318–330CrossRefPubMedGoogle Scholar
  28. Palmer S, Josefsson L, Coffin JM (2011) HIV reservoirs and the possibility of a cure for HIV infection. J Intern Med 270:550–560CrossRefPubMedGoogle Scholar
  29. Puligujja P, McMillan J, Kendrick L, Li T, Balkundi S, Smith N, Veerubhotla RS, Edagwa BJ, Kabanov AV, Bronich T, Gendelman HE, Liu XM (2013) Macrophage folate receptor-targeted antiretroviral therapy facilitates drug entry, retention, antiretroviral activities and biodistribution for reduction of human immunodeficiency virus infections. Nanomedicine, In PressGoogle Scholar
  30. Re F, Gregori M, Masserini M (2012) Nanotechnology for neurodegenerative disorders. Nanomedicine 8(Suppl 1):S51–S58CrossRefPubMedGoogle Scholar
  31. Rosenberg GA (1997) Neuroinflammatory disease. IBC meeting on neuroinflammatory disease: research and treatment strategies. London, UK, 17 and 18 September 1996. Mol Med Today 3:12–13CrossRefPubMedGoogle Scholar
  32. Roy U, McMillan J, Alnouti Y, Gautum N, Smith N, Balkundi S, Dash P, Gorantla S, Martinez-Skinner A, Meza J, Kanmogne G, Swindells S, Cohen SM, Mosley RL, Poluektova L, Gendelman HE (2012) Pharmacodynamic and antiretroviral activities of combination nanoformulated antiretrovirals in HIV-1-infected human peripheral blood lymphocyte-reconstituted mice. J Infect Dis 206:1577–1588CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • JoEllyn M. McMillan
    • 1
  • Xin-Ming Liu
    • 2
    • 3
  • Howard E. Gendelman
    • 2
    • 3
    Email author
  1. 1.Department of Pharmacology and Experimental NeuroscienceUniversity of Nebraska Medical CenterOmahaUSA
  2. 2.Department of Pharmacology and Experimental Neuroscience and Center for Drug Delivery and NanomedicineUniversity of Nebraska Medical CenterOmahaUSA
  3. 3.Department of Pharmaceutical Sciences, and Center for Drug Delivery and NanomedicineUniversity of Nebraska Medical CenterOmahaUSA

Personalised recommendations