Skip to main content

Part of the book series: Springer Protocols Handbooks ((SPH))

  • 5225 Accesses

Abstract

Existing diagnostic and therapeutic strategies for central nervous system (CNS) disorders are restricted to access the CNS. Meanwhile, the blood–brain barrier (BBB) hinders the delivery of many potentially important diagnostic and therapeutic agents to the brain. To resolve these problems, various nanoformulation technologies were developed to improve the delivery of diagnostic and therapeutic agents into CNS. In this chapter, we discussed the manufacture, characteristics, and potential problems of widely used nanoformulations including liposomes, polymeric micelles, and nanosuspensions. We expect that this chapter would provide novel nanoformulation tools for the basic and clinical research of neuroscientists.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abraham SA, Waterhouse DN, Mayer LD, Cullis PR, Madden TD, Bally MB (2005) The liposomal formulation of doxorubicin. Methods Enzymol 391:71–97

    Article  CAS  PubMed  Google Scholar 

  • Balkundi S, Nowacek AS, Roy U, Martinez-Skinner A, McMillan J, Gendelman HE (2010) Methods development for blood borne macrophage carriage of nanoformulated antiretroviral drugs. J Vis Exp (46): 2460

    Google Scholar 

  • Batrakova EV, Kabanov AV (2008) Pluronic block copolymers: evolution of drug delivery concept from inert nanocarriers to biological response modifiers. J Control Release 130:98–106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dou H, Grotepas CB, McMillan JM, Destache CJ, Chaubal M, Werling J, Kipp J, Rabinow B, Gendelman HE (2009) Macrophage delivery of nanoformulated antiretroviral drug to the brain in a murine model of neuroAIDS. J Immunol 183:661–669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan J, Zhang Y, Chuang-Smith ON, Frank KL, Guenther BD, Kern M, Schlievert PM, Herzberg MC (2012) Ecto-5′-nucleotidase: a candidate virulence factor in Streptococcus sanguinis experimental endocarditis. PLoS One 7(6):e38059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferrari M (2005) Cancer nanotechnology: opportunities and challenges. Nat Rev Cancer 5:161–171

    Article  CAS  PubMed  Google Scholar 

  • Gabizon A, Horowitz AT, Goren D, Tzemach D, Shmeeda H, Zalipsky S (2003) In vivo fate of folate-targeted polyethylene-glycol liposomes in tumor-bearing mice. Clin Cancer Res 9:6551–6559

    CAS  PubMed  Google Scholar 

  • Gaitanis A, Staal S (2010) Liposomal doxorubicin and nab-paclitaxel: nanoparticle cancer chemotherapy in current clinical use. Methods Mol Biol 624:385–392

    Article  CAS  PubMed  Google Scholar 

  • Gast K, Zirwer D, Ladhoff AM, Schreiber J, Koelsch R, Kretschmer K, Lasch J (1982) Auto-oxidation-induced fusion of lipid vesicles. Biochim Biophys Acta 686:99–109

    Article  CAS  PubMed  Google Scholar 

  • Gilmore JL, Yi X, Quan L, Kabanov AV (2008) Novel nanomaterials for clinical neuroscience. J Neuroimmune Pharmacol 3:83–94

    Article  PubMed  PubMed Central  Google Scholar 

  • Groothuis DR (2000) The blood–brain and blood-tumor barriers: a review of strategies for increasing drug delivery. Neuro Oncol 2:45–59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haney MJ, Zhao Y, Li S, Higginbotham SM, Booth SL, Han HY, Vetro JA, Mosley RL, Kabanov AV, Gendelman HE, Batrakova EV (2011) Cell-mediated transfer of catalase nanoparticles from macrophages to brain endothelial, glial and neuronal cells. Nanomedicine (Lond) 6:1215–1230

    Article  CAS  Google Scholar 

  • Immordino ML, Dosio F, Cattel L (2006) Stealth liposomes: review of the basic science, rationale, and clinical applications, existing and potential. Int J Nanomedicine 1:297–315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Junghanns JU, Muller RH (2008) Nanocrystal technology, drug delivery and clinical applications. Int J Nanomedicine 3:295–309

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kabanov AV, Batrakova EV, Alakhov VY (2002) Pluronic block copolymers for overcoming drug resistance in cancer. Adv Drug Deliv Rev 54:759–779

    Article  CAS  PubMed  Google Scholar 

  • Kadiu I, Nowacek A, McMillan J, Gendelman HE (2011) Macrophage endocytic trafficking of antiretroviral nanoparticles. Nanomedicine (Lond) 6:975–994

    Article  CAS  Google Scholar 

  • Kanmogne GD, Singh S, Roy U, Liu XM, McMillan J, Gorantla S, Balkundi S, Smith N, Alnouti Y, Gautum N, Zhou Y, Poluektova L, Kabanov A, Bronich T, Gendelman HE (2012) Mononuclear phagocyte intercellular crosstalk facilitates transmission of cell targeted nanoformulated antiretroviral drugs to human brain endothelial cells. Int J Nanomedicine 7:2373–2388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kohori F, Yokoyama M, Sakai K, Okano T (2002) Process design for efficient and controlled drug incorporation into polymeric micelle carrier systems. J Control Release 78:155–163

    Article  CAS  PubMed  Google Scholar 

  • Krauze MT, Noble CO, Kawaguchi T, Drummond D, Kirpotin DB, Yamashita Y, Kullberg E, Forsayeth J, Park JW, Bankiewicz KS (2007) Convection-enhanced delivery of nanoliposomal CPT-11 (irinotecan) and PEGylated liposomal doxorubicin (Doxil) in rodent intracranial brain tumor xenografts. Neuro Oncol 9:393–403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loch-Neckel G, Koepp J (2010) The blood–brain barrier and drug delivery in the central nervous system. Rev Neurol 51:165–174

    PubMed  Google Scholar 

  • Maeda H, Wu J, Sawa T, Matsumura Y, Hori K (2000) Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release 65:271–284

    Article  CAS  PubMed  Google Scholar 

  • Maruyama K (2011) Intracellular targeting delivery of liposomal drugs to solid tumors based on EPR effects. Adv Drug Deliv Rev 63:161–169

    Article  CAS  PubMed  Google Scholar 

  • Mayeux R (2003) Epidemiology of neurodegeneration. Annu Rev Neurosci 26:81–104

    Article  CAS  PubMed  Google Scholar 

  • Modi G, Pillay V, Choonara YE (2010) Advances in the treatment of neurodegenerative disorders employing nanotechnology. Ann N Y Acad Sci 1184:154–172

    Article  CAS  PubMed  Google Scholar 

  • Nowacek AS, McMillan J, Miller R, Anderson A, Rabinow B, Gendelman HE (2010) Nanoformulated antiretroviral drug combinations extend drug release and antiretroviral responses in HIV-1-infected macrophages: implications for neuroAIDS therapeutics. J Neuroimmune Pharmacol 5:592–601

    Article  PubMed  PubMed Central  Google Scholar 

  • Nowacek AS, Balkundi S, McMillan J, Roy U, Martinez-Skinner A, Mosley RL, Kanmogne G, Kabanov AV, Bronich T, Gendelman HE (2011) Analyses of nanoformulated antiretroviral drug charge, size, shape and content for uptake, drug release and antiviral activities in human monocyte-derived macrophages. J Control Release 150:204–211

    Article  CAS  PubMed  Google Scholar 

  • Oh KT, Bronich TK, Kabanov AV (2004) Micellar formulations for drug delivery based on mixtures of hydrophobic and hydrophilic Pluronic block copolymers. J Control Release 94:411–422

    Article  CAS  PubMed  Google Scholar 

  • Orlacchio A, Bernardi G, Orlacchio A, Martino S (2010) Stem cells: an overview of the current status of therapies for central and peripheral nervous system diseases. Curr Med Chem 17:595–608

    Article  CAS  PubMed  Google Scholar 

  • Patravale VB, Date AA, Kulkarni RM (2004) Nanosuspensions: a promising drug delivery strategy. J Pharm Pharmacol 56:827–840

    Article  CAS  PubMed  Google Scholar 

  • Shao K, Huang R, Li J, Han L, Ye L, Lou J, Jiang C (2010) Angiopep-2 modified PE-PEG based polymeric micelles for amphotericin B delivery targeted to the brain. J Control Release 147:118–126

    Article  CAS  PubMed  Google Scholar 

  • Torchilin VP (2005) Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov 4:145–160

    Article  CAS  PubMed  Google Scholar 

  • Van Eerdenbrugh B, Van den Mooter G, Augustijns P (2008) Top-down production of drug nanocrystals: nanosuspension stabilization, miniaturization and transformation into solid products. Int J Pharm 364:64–75

    Article  PubMed  Google Scholar 

  • Xu L, Huang CC, Huang W, Tang WH, Rait A, Yin YZ, Cruz I, Xiang LM, Pirollo KF, Chang EH (2002) Systemic tumor-targeted gene delivery by anti-transferrin receptor scFv-immunoliposomes. Mol Cancer Ther 1:337–346

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xin-Ming Liu Ph.D. or Tatiana K. Bronich Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Liu, XM., Bronich, T.K. (2014). Nanoformulations. In: Xiong, H., Gendelman, H.E. (eds) Current Laboratory Methods in Neuroscience Research. Springer Protocols Handbooks. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8794-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8794-4_16

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8793-7

  • Online ISBN: 978-1-4614-8794-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics