• Xin-Ming LiuEmail author
  • Tatiana K. BronichEmail author
Part of the Springer Protocols Handbooks book series (SPH)


Existing diagnostic and therapeutic strategies for central nervous system (CNS) disorders are restricted to access the CNS. Meanwhile, the blood–brain barrier (BBB) hinders the delivery of many potentially important diagnostic and therapeutic agents to the brain. To resolve these problems, various nanoformulation technologies were developed to improve the delivery of diagnostic and therapeutic agents into CNS. In this chapter, we discussed the manufacture, characteristics, and potential problems of widely used nanoformulations including liposomes, polymeric micelles, and nanosuspensions. We expect that this chapter would provide novel nanoformulation tools for the basic and clinical research of neuroscientists.


Nanoformulations Liposomes Micelles Nanosuspensions 


  1. Abraham SA, Waterhouse DN, Mayer LD, Cullis PR, Madden TD, Bally MB (2005) The liposomal formulation of doxorubicin. Methods Enzymol 391:71–97CrossRefPubMedGoogle Scholar
  2. Balkundi S, Nowacek AS, Roy U, Martinez-Skinner A, McMillan J, Gendelman HE (2010) Methods development for blood borne macrophage carriage of nanoformulated antiretroviral drugs. J Vis Exp (46): 2460Google Scholar
  3. Batrakova EV, Kabanov AV (2008) Pluronic block copolymers: evolution of drug delivery concept from inert nanocarriers to biological response modifiers. J Control Release 130:98–106CrossRefPubMedPubMedCentralGoogle Scholar
  4. Dou H, Grotepas CB, McMillan JM, Destache CJ, Chaubal M, Werling J, Kipp J, Rabinow B, Gendelman HE (2009) Macrophage delivery of nanoformulated antiretroviral drug to the brain in a murine model of neuroAIDS. J Immunol 183:661–669CrossRefPubMedPubMedCentralGoogle Scholar
  5. Fan J, Zhang Y, Chuang-Smith ON, Frank KL, Guenther BD, Kern M, Schlievert PM, Herzberg MC (2012) Ecto-5′-nucleotidase: a candidate virulence factor in Streptococcus sanguinis experimental endocarditis. PLoS One 7(6):e38059CrossRefPubMedPubMedCentralGoogle Scholar
  6. Ferrari M (2005) Cancer nanotechnology: opportunities and challenges. Nat Rev Cancer 5:161–171CrossRefPubMedGoogle Scholar
  7. Gabizon A, Horowitz AT, Goren D, Tzemach D, Shmeeda H, Zalipsky S (2003) In vivo fate of folate-targeted polyethylene-glycol liposomes in tumor-bearing mice. Clin Cancer Res 9:6551–6559PubMedGoogle Scholar
  8. Gaitanis A, Staal S (2010) Liposomal doxorubicin and nab-paclitaxel: nanoparticle cancer chemotherapy in current clinical use. Methods Mol Biol 624:385–392CrossRefPubMedGoogle Scholar
  9. Gast K, Zirwer D, Ladhoff AM, Schreiber J, Koelsch R, Kretschmer K, Lasch J (1982) Auto-oxidation-induced fusion of lipid vesicles. Biochim Biophys Acta 686:99–109CrossRefPubMedGoogle Scholar
  10. Gilmore JL, Yi X, Quan L, Kabanov AV (2008) Novel nanomaterials for clinical neuroscience. J Neuroimmune Pharmacol 3:83–94CrossRefPubMedPubMedCentralGoogle Scholar
  11. Groothuis DR (2000) The blood–brain and blood-tumor barriers: a review of strategies for increasing drug delivery. Neuro Oncol 2:45–59CrossRefPubMedPubMedCentralGoogle Scholar
  12. Haney MJ, Zhao Y, Li S, Higginbotham SM, Booth SL, Han HY, Vetro JA, Mosley RL, Kabanov AV, Gendelman HE, Batrakova EV (2011) Cell-mediated transfer of catalase nanoparticles from macrophages to brain endothelial, glial and neuronal cells. Nanomedicine (Lond) 6:1215–1230CrossRefGoogle Scholar
  13. Immordino ML, Dosio F, Cattel L (2006) Stealth liposomes: review of the basic science, rationale, and clinical applications, existing and potential. Int J Nanomedicine 1:297–315CrossRefPubMedPubMedCentralGoogle Scholar
  14. Junghanns JU, Muller RH (2008) Nanocrystal technology, drug delivery and clinical applications. Int J Nanomedicine 3:295–309PubMedPubMedCentralGoogle Scholar
  15. Kabanov AV, Batrakova EV, Alakhov VY (2002) Pluronic block copolymers for overcoming drug resistance in cancer. Adv Drug Deliv Rev 54:759–779CrossRefPubMedGoogle Scholar
  16. Kadiu I, Nowacek A, McMillan J, Gendelman HE (2011) Macrophage endocytic trafficking of antiretroviral nanoparticles. Nanomedicine (Lond) 6:975–994CrossRefGoogle Scholar
  17. Kanmogne GD, Singh S, Roy U, Liu XM, McMillan J, Gorantla S, Balkundi S, Smith N, Alnouti Y, Gautum N, Zhou Y, Poluektova L, Kabanov A, Bronich T, Gendelman HE (2012) Mononuclear phagocyte intercellular crosstalk facilitates transmission of cell targeted nanoformulated antiretroviral drugs to human brain endothelial cells. Int J Nanomedicine 7:2373–2388CrossRefPubMedPubMedCentralGoogle Scholar
  18. Kohori F, Yokoyama M, Sakai K, Okano T (2002) Process design for efficient and controlled drug incorporation into polymeric micelle carrier systems. J Control Release 78:155–163CrossRefPubMedGoogle Scholar
  19. Krauze MT, Noble CO, Kawaguchi T, Drummond D, Kirpotin DB, Yamashita Y, Kullberg E, Forsayeth J, Park JW, Bankiewicz KS (2007) Convection-enhanced delivery of nanoliposomal CPT-11 (irinotecan) and PEGylated liposomal doxorubicin (Doxil) in rodent intracranial brain tumor xenografts. Neuro Oncol 9:393–403CrossRefPubMedPubMedCentralGoogle Scholar
  20. Loch-Neckel G, Koepp J (2010) The blood–brain barrier and drug delivery in the central nervous system. Rev Neurol 51:165–174PubMedGoogle Scholar
  21. Maeda H, Wu J, Sawa T, Matsumura Y, Hori K (2000) Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release 65:271–284CrossRefPubMedGoogle Scholar
  22. Maruyama K (2011) Intracellular targeting delivery of liposomal drugs to solid tumors based on EPR effects. Adv Drug Deliv Rev 63:161–169CrossRefPubMedGoogle Scholar
  23. Mayeux R (2003) Epidemiology of neurodegeneration. Annu Rev Neurosci 26:81–104CrossRefPubMedGoogle Scholar
  24. Modi G, Pillay V, Choonara YE (2010) Advances in the treatment of neurodegenerative disorders employing nanotechnology. Ann N Y Acad Sci 1184:154–172CrossRefPubMedGoogle Scholar
  25. Nowacek AS, McMillan J, Miller R, Anderson A, Rabinow B, Gendelman HE (2010) Nanoformulated antiretroviral drug combinations extend drug release and antiretroviral responses in HIV-1-infected macrophages: implications for neuroAIDS therapeutics. J Neuroimmune Pharmacol 5:592–601CrossRefPubMedPubMedCentralGoogle Scholar
  26. Nowacek AS, Balkundi S, McMillan J, Roy U, Martinez-Skinner A, Mosley RL, Kanmogne G, Kabanov AV, Bronich T, Gendelman HE (2011) Analyses of nanoformulated antiretroviral drug charge, size, shape and content for uptake, drug release and antiviral activities in human monocyte-derived macrophages. J Control Release 150:204–211CrossRefPubMedGoogle Scholar
  27. Oh KT, Bronich TK, Kabanov AV (2004) Micellar formulations for drug delivery based on mixtures of hydrophobic and hydrophilic Pluronic block copolymers. J Control Release 94:411–422CrossRefPubMedGoogle Scholar
  28. Orlacchio A, Bernardi G, Orlacchio A, Martino S (2010) Stem cells: an overview of the current status of therapies for central and peripheral nervous system diseases. Curr Med Chem 17:595–608CrossRefPubMedGoogle Scholar
  29. Patravale VB, Date AA, Kulkarni RM (2004) Nanosuspensions: a promising drug delivery strategy. J Pharm Pharmacol 56:827–840CrossRefPubMedGoogle Scholar
  30. Shao K, Huang R, Li J, Han L, Ye L, Lou J, Jiang C (2010) Angiopep-2 modified PE-PEG based polymeric micelles for amphotericin B delivery targeted to the brain. J Control Release 147:118–126CrossRefPubMedGoogle Scholar
  31. Torchilin VP (2005) Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov 4:145–160CrossRefPubMedGoogle Scholar
  32. Van Eerdenbrugh B, Van den Mooter G, Augustijns P (2008) Top-down production of drug nanocrystals: nanosuspension stabilization, miniaturization and transformation into solid products. Int J Pharm 364:64–75CrossRefPubMedGoogle Scholar
  33. Xu L, Huang CC, Huang W, Tang WH, Rait A, Yin YZ, Cruz I, Xiang LM, Pirollo KF, Chang EH (2002) Systemic tumor-targeted gene delivery by anti-transferrin receptor scFv-immunoliposomes. Mol Cancer Ther 1:337–346PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Pharmacology and Experimental NeuroscienceCenter for Drug Delivery and Nanomedicine, University of Nebraska Medical CenterOmahaUSA
  2. 2.Departments of Pharmaceutical Sciences, Center for Drug Delivery and NanomedicineUniversity of Nebraska Medical CenterOmahaUSA

Personalised recommendations