Advertisement

Polymerase Chain Reaction (PCR) and Real-Time PCR

  • Georgette D. KanmogneEmail author
Protocol
  • 4.1k Downloads
Part of the Springer Protocols Handbooks book series (SPH)

Abstract

The PCR technique, developed over 3 decades ago, has revolutionized molecular biology. PCR applications encompass several fields, including genetics, molecular cloning, diagnosis of infectious and hereditary diseases, and forensic sciences. Improvements of the PCR technique have resulted in its expansion to include variants such as reverse-transcription PCR, real-time PCR, and real-time reverse-transcription PCR. This chapter provides an overview of current PCR and PCR variants methods.

Keywords

PCR Quantitative PCR mRNA Complementary DNA Reverse transcription 

Notes

Acknowledgment

Dr. Georgette Kanmogne’s research is supported by grants from the National Institute of Mental Health grants 1RO1 MH081780 and 1RO1 MH094160.

References

  1. Arya M, Shergill IS, Williamson M, Gommersall L, Arya N, Patel HR (2005) Basic principles of real-time quantitative PCR. Expert Rev Mol Diagn 5:209–219CrossRefPubMedGoogle Scholar
  2. Bartlett JM, Stirling D (2003) A short history of the polymerase chain reaction. Methods Mol Biol 226:3–6PubMedGoogle Scholar
  3. Bustin SA (2000) Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. J Mol Endocrinol 25:169–193CrossRefPubMedGoogle Scholar
  4. Bustin SA, Benes V, Nolan T, Pfaffl MW (2005) Quantitative real-time RT-PCR—a perspective. J Mol Endocrinol 34:597–601CrossRefPubMedGoogle Scholar
  5. Cale JM, Shaw CE, Bird IM (1998) Optimization of a reverse transcription-polymerase chain reaction (RT-PCR) mass assay for low-abundance mRNA. Methods Mol Biol 105:351–371PubMedGoogle Scholar
  6. Chou Q, Russell M, Birch DE, Raymond J, Bloch W (1992) Prevention of pre-PCR mis-priming and primer dimerization improves low-copy-number amplifications. Nucleic Acids Res 20:1717–1723CrossRefPubMedPubMedCentralGoogle Scholar
  7. Clementi M, Menzo S, Manzin A, Bagnarelli P (1995) Quantitative molecular methods in virology. Arch Virol 140:1523–1539CrossRefPubMedGoogle Scholar
  8. D’Aquila RT, Bechtel LJ, Videler JA, Eron JJ, Gorczyca P, Kaplan JC (1991) Maximizing sensitivity and specificity of PCR by pre-amplification heating. Nucleic Acids Res 19:3749CrossRefPubMedPubMedCentralGoogle Scholar
  9. Gause WC, Adamovicz J (1994) The use of the PCR to quantitate gene expression. PCR Methods Appl 3:S123–S135CrossRefPubMedGoogle Scholar
  10. Ginzinger DG (2002) Gene quantification using real-time quantitative PCR: an emerging technology hits the mainstream. Exp Hematol 30:503–512CrossRefPubMedGoogle Scholar
  11. Halford WP, Falco VC, Gebhardt BM, Carr DJ (1999) The inherent quantitative capacity of the reverse transcription-polymerase chain reaction. Anal Biochem 266:181–191CrossRefPubMedGoogle Scholar
  12. Hue-Roye K, Vege S (2008) Principles of PCR-based assays. Immunohematology 24:170–175PubMedGoogle Scholar
  13. Invitrogen (2008) Real-time PCR: from theory to practice. www.invitrogencom
  14. Ishmael FT, Stellato C (2008) Principles and applications of polymerase chain reaction: basic science for the practicing physician. Ann Allergy Asthma Immunol 101:437–443CrossRefPubMedGoogle Scholar
  15. Johansson MK (2006) Choosing reporter-quencher pairs for efficient quenching through formation of intramolecular dimers. Methods Mol Biol 335:17–29PubMedGoogle Scholar
  16. Kubista M, Andrade JM, Bengtsson M, Forootan A, Jonak J, Lind K, Sindelka R, Sjoback R, Sjogreen B, Strombom L, Stahlberg A, Zoric N (2006) The real-time polymerase chain reaction. Mol Aspects Med 27:95–125CrossRefPubMedGoogle Scholar
  17. Lie YS, Petropoulos CJ (1998) Advances in quantitative PCR technology: 5′ nuclease assays. Curr Opin Biotechnol 9:43–48CrossRefPubMedGoogle Scholar
  18. Lutfalla G, Uze G (2006) Performing quantitative reverse-transcribed polymerase chain reaction experiments. Methods Enzymol 410:386–400CrossRefPubMedGoogle Scholar
  19. McChlery SM, Clarke SC (2003) The use of hydrolysis and hairpin probes in real-time PCR. Mol Biotechnol 25:267–274CrossRefPubMedGoogle Scholar
  20. Mullis K, Faloona F, Scharf S, Saiki R, Horn G, Erlich H (1986) Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Cold Spring Harb Symp Quant Biol 51(Pt 1):263–273CrossRefPubMedGoogle Scholar
  21. Promega (2008) Genomic DNA Purification Instructor’s Manual. www.promegacom
  22. Quellhorst G, Rulli, S. (2008) A systematic guideline for developing the best real-time PCR primers. What we have learned from designing assays for more than 14,000 genes. SABiosciences www.SABiosciencescom
  23. Saiki RK, Bugawan TL, Horn GT, Mullis KB, Erlich HA (1986) Analysis of enzymatically amplified beta-globin and HLA-DQ alpha DNA with allele-specific oligonucleotide probes. Nature 324: 163–166CrossRefPubMedGoogle Scholar
  24. Saiki RK, Scharf S, Faloona F, Mullis KB, Horn GT, Erlich HA, Arnheim N (1985) Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 230:1350–1354CrossRefPubMedGoogle Scholar
  25. Salomon RN (1995) Introduction to reverse transcription polymerase chain reaction. Diagn Mol Pathol 4:2–3CrossRefPubMedGoogle Scholar
  26. Schefe JH, Lehmann KE, Buschmann IR, Unger T, Funke-Kaiser H (2006) Quantitative real-time RT-PCR data analysis: current concepts and the novel “gene expression’s CT difference” formula. J Mol Med (Berl) 84:901–910CrossRefGoogle Scholar
  27. Tsai SJ, Wiltbank MC (1996) Quantification of mRNA using competitive RT-PCR with standard-curve methodology. Biotechniques 21:862–866PubMedGoogle Scholar
  28. VanGuilder HD, Vrana KE, Freeman WM (2008) Twenty-five years of quantitative PCR for gene expression analysis. Biotechniques 44:619–626CrossRefPubMedGoogle Scholar
  29. Whitman DF, Dunbar SA (2008) Real-time polymerase chain reaction detection methods. Recent Pat DNA Gene Seq 2:20–26CrossRefPubMedGoogle Scholar
  30. Wilfinger WW, Mackey K, Chomczynski P (1997) Effect of pH and ionic strength on the spectrophotometric assessment of nucleic acid purity. Biotechniques 22(474–476):478–481Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Pharmacology and Experimental NeuroscienceUniversity of Nebraska Medical CenterOmahaUSA

Personalised recommendations