Advertisement

Western Blotting Technique in Biomedical Research

  • Jianuo LiuEmail author
  • James Haorah
  • Huangui Xiong
Protocol
Part of the Springer Protocols Handbooks book series (SPH)

Abstract

Western Blot is the most important and powerful technique frequently used in laboratory research. It is used to identify specific proteins in biological samples isolated from cells or tissues. Similar to the Southern Blot for DNA and Northern Blot for RNA, the Western Blot procedures rely upon three key elements: the separation of protein mixtures by size utilizing sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the efficient transfer of separated proteins from the gel to a nitrocellulose or polyvinylidene difluoride membrane, and identification of a target protein via conjugation with specific primary and enzyme-labeled secondary antibodies. This specificity of the antibody–antigen interaction enables a target protein to be identified in the midst of a complex protein mixture. Once detected, an appropriate substrate is then added to the enzyme, and together, they produce a detectable band visible on a blotting membrane, X-ray file, or imaging system. Western Blot is rapid, and simple, enabling easy to interpret, unique, and unambiguous results. Along with other immunoassays, Western Blot is routinely used in research and clinical settings.

Keywords

Western Blot Proteins Sodium dodecyl sulfate-polyacrylamide gel electrophoresis Nitrocellulose membrane Polyvinylidene difluoride membrane Primary antibody Secondary antibody 

References

  1. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254CrossRefPubMedGoogle Scholar
  2. Burnette WN (1981) “Western blotting”: electrophoretic transfer of proteins from sodium dodecyl sulfate–polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A. Anal Biochem 112:195–203CrossRefPubMedGoogle Scholar
  3. Davis BJ (1964) Disc electrophoresis. II. Method and application to human serum proteins. Ann N Y Acad Sci 121:404–427CrossRefPubMedGoogle Scholar
  4. Gajovic O, Todorovic Z, Nesic L, Lazic Z (2010) [Lyme borreliosis—diagnostic difficulties in interpreting serological results]. Med Pregl 63:839–843CrossRefPubMedGoogle Scholar
  5. Gershoni JM, Palade GE (1982) Electrophoretic transfer of proteins from sodium dodecyl sulfate-polyacrylamide gels to a positively charged membrane filter. Anal Biochem 124:396–405CrossRefPubMedGoogle Scholar
  6. Gershoni JM, Palade GE (1983) Protein blotting: principles and applications. Anal Biochem 131:1–15CrossRefPubMedGoogle Scholar
  7. Kruger NJ (1994) The Bradford method for protein quantitation. Methods Mol Biol 32:9–15PubMedGoogle Scholar
  8. Kurien BT, Scofield RH (1997) Multiple immunoblots after non-electrophoretic bidirectional transfer of a single SDS-PAGE gel with multiple antigens. J Immunol Methods 205:91–94CrossRefPubMedGoogle Scholar
  9. Kurien BT, Scofield RH (2002) Heat-mediated, ultra-rapid electrophoretic transfer of high and low molecular weight proteins to nitrocellulose membranes. J Immunol Methods 266:127–133CrossRefPubMedGoogle Scholar
  10. Kurien BT, Scofield RH (2006) Western blotting. Methods 38:283–293CrossRefPubMedGoogle Scholar
  11. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685CrossRefPubMedGoogle Scholar
  12. LeGendre N (1990) Immobilon-P transfer membrane: applications and utility in protein biochemical analysis. Biotechniques 9:788–805PubMedGoogle Scholar
  13. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275PubMedGoogle Scholar
  14. Masciotra S, Livellara B, Belloso W, Clara L, Tanuri A, Ramos AC, Baggs J, Lal R, Pieniazek D (2000) Evidence of a high frequency of HIV-1 subtype F infections in a heterosexual population in Buenos Aires, Argentina. AIDS Res Hum Retroviruses 16:1007–1014CrossRefPubMedGoogle Scholar
  15. Masciotra S, McDougal JS, Feldman J, Sprinkle P, Wesolowski L, Owen SM (2011) Evaluation of an alternative HIV diagnostic algorithm using specimens from seroconversion panels and persons with established HIV infections. J Clin Virol 52(Suppl 1):S17–22CrossRefPubMedGoogle Scholar
  16. Matsudaira P (1987) Sequence from picomole quantities of proteins electroblotted onto polyvinylidene difluoride membranes. J Biol Chem 262:10035–10038PubMedGoogle Scholar
  17. Noble JE, Bailey MJ (2009) Quantitation of protein. Methods Enzymol 463:73–95CrossRefPubMedGoogle Scholar
  18. Ornstein L (1964) Disc electrophoresis. I. Background and theory. Ann N Y Acad Sci 121:321–349CrossRefPubMedGoogle Scholar
  19. Pappaioanou M, Kashamuka M, Behets F, Mbala S, Biyela K, Davachi F, George JR, Green TA, Dondero TJ, Heyward WL et al (1993) Accurate detection of maternal antibodies to HIV in newborn whole blood dried on filter paper. AIDS 7:483–488CrossRefPubMedGoogle Scholar
  20. Peferoen M, Fransen P, De Loof A (1982) Influence of procaine HCl on larval development, adult lifespan and acid phosphatase activity in Musca domestica L. Arch Int Physiol Biochim 90:309–315PubMedGoogle Scholar
  21. Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150:76–85CrossRefPubMedGoogle Scholar
  22. Southern EM (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98:503–517CrossRefPubMedGoogle Scholar
  23. Torian LV, Forgione LA, Punsalang AE, Pirillo RE, Oleszko WR (2011) Comparison of Multispot EIA with Western blot for confirmatory serodiagnosis of HIV. J Clin Virol 52(Suppl 1):S41–4CrossRefPubMedGoogle Scholar
  24. Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A 76:4350–4354CrossRefPubMedPubMedCentralGoogle Scholar
  25. Wiechelman KJ, Braun RD, Fitzpatrick JD (1988) Investigation of the bicinchoninic acid protein assay: identification of the groups responsible for color formation. Anal Biochem 175:231–237CrossRefPubMedGoogle Scholar
  26. Zoller L, Cremer J, Faulde M (1993) Western blot as a tool in the diagnosis of Lyme borreliosis. Electrophoresis 14:937–944CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Pharmacology and Experimental NeuroscienceUniversity of Nebraska Medical Center, Durham Research CenterOmahaUSA

Personalised recommendations