Advertisement

Isolation of Synaptosomes from Archived Brain Tissues

  • Gurudutt PendyalaEmail author
  • James L. Buescher
  • Howard S. Fox
Protocol
Part of the Springer Protocols Handbooks book series (SPH)

Abstract

Synapses in the central nervous system serve as communication points between neurons and are critical regulators of neurotransmission and synaptic plasticity, the latter refers to a process of experience dependent changes in synaptic connectivity, where neurons undergo extensive sculpting and rewiring. Research on understanding the changes at the level of the synapse holds great promise into understanding the biological basis of many neurodegenerative and neuropsychiatric disorders in which brain wiring goes awry. One such approach to understand the changes occurring at the synapse is by isolating synaptosomes. Here, we describe the isolation of synaptosomes from archived human brain tissue using subcellular fractionation, which when combined to high-throughput “omics”-based approaches could yield vital clues into understanding the underlying bases of neurodegeneration.

Keywords

CNS Neurodegeneration Synapse Synaptosomes 

References

  1. Bayes A, Grant SG (2009) Neuroproteomics: understanding the molecular organization and complexity of the brain. Nat Rev Neurosci 10:635–646CrossRefPubMedGoogle Scholar
  2. Booth RF, Clark JB (1978) A rapid method for the preparation of relatively pure metabolically competent synaptosomes from rat brain. Biochem J 176:365–370CrossRefPubMedPubMedCentralGoogle Scholar
  3. Boyd-Kimball D, Castegna A, Sultana R, Poon HF, Petroze R, Lynn BC, Klein JB, Butterfield DA (2005) Proteomic identification of proteins oxidized by Abeta(1–42) in synaptosomes: implications for Alzheimer’s disease. Brain Res 1044:206–215CrossRefPubMedGoogle Scholar
  4. Bramham CR, Wells DG (2007) Dendritic mRNA: transport, translation and function. Nat Rev Neurosci 8:776–789CrossRefPubMedGoogle Scholar
  5. Chandrasekar V, Dreyer JL (2009) microRNAs miR-124, let-7d and miR-181a regulate cocaine-induced plasticity. Mol Cell Neurosci 42:350–362CrossRefPubMedGoogle Scholar
  6. DeGiorgis JA, Jaffe H, Moreira JE, Carlotti CG Jr, Leite JP, Pant HC, Dosemeci A (2005) Phosphoproteomic analysis of synaptosomes from human cerebral cortex. J Proteome Res 4:306–315CrossRefPubMedGoogle Scholar
  7. Filiou MD, Bisle B, Reckow S, Teplytska L, Maccarrone G, Turck CW (2010) Profiling of mouse synaptosome proteome and phosphoproteome by IEF. Electrophoresis 31:1294–1301CrossRefPubMedGoogle Scholar
  8. Gelman BB, Nguyen TP (2010) Synaptic proteins linked to HIV-1 infection and immunoproteasome induction: proteomic analysis of human synaptosomes. J Neuroimmune Pharmacol 5(1):92–102CrossRefPubMedGoogle Scholar
  9. Gray EG, Whittaker VP (1962) The isolation of nerve endings from brain: an electron-microscopic study of cell fragments derived by homogenization and centrifugation. J Anat 96:79–88PubMedPubMedCentralGoogle Scholar
  10. Gygi SP, Rist B, Gerber SA, Turecek F, Gelb MH, Aebersold R (1999) Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol 17:994–999CrossRefPubMedGoogle Scholar
  11. Ji B, Zhang Z, Zhang M, Zhu H, Zhou K, Yang J, Li Y, Sun L, Feng G, Wang Y, He L, Wan C (2009) Differential expression profiling of the synaptosome proteome in a rat model of antipsychotic resistance. Brain Res 1295:170–178CrossRefPubMedGoogle Scholar
  12. Junn E, Lee KW, Jeong BS, Chan TW, Im JY, Mouradian MM (2009) Repression of alpha-synuclein expression and toxicity by microRNA-7. Proc Natl Acad Sci U S A 106:13052–13057CrossRefPubMedPubMedCentralGoogle Scholar
  13. Khudayberdiev S, Fiore R, Schratt G (2009) MicroRNA as modulators of neuronal responses. Commun Integr Biol 2:411–413CrossRefPubMedPubMedCentralGoogle Scholar
  14. Kim SI, Voshol H, van Oostrum J, Hastings TG, Cascio M, Glucksman MJ (2004) Neuroproteomics: expression profiling of the brain’s proteomes in health and disease. Neurochem Res 29:1317–1331CrossRefPubMedGoogle Scholar
  15. Konecna A, Heraud JE, Schoderboeck L, Raposo AA, Kiebler MA (2009) What are the roles of microRNAs at the mammalian synapse? Neurosci Lett 466:63–68CrossRefPubMedGoogle Scholar
  16. Laterza OF, Lim L, Garrett-Engele PW, Vlasakova K, Muniappa N, Tanaka WK, Johnson JM, Sina JF, Fare TL, Sistare FD, Glaab WE (2009) Plasma MicroRNAs as sensitive and specific biomarkers of tissue injury. Clin Chem 55:1977–1983CrossRefPubMedGoogle Scholar
  17. Liao L, McClatchy DB, Yates JR (2009) Shotgun proteomics in neuroscience. Neuron 63:12–26CrossRefPubMedPubMedCentralGoogle Scholar
  18. Lugli G, Torvik VI, Larson J, Smalheiser NR (2008) Expression of microRNAs and their precursors in synaptic fractions of adult mouse forebrain. J Neurochem 106:650–661CrossRefPubMedPubMedCentralGoogle Scholar
  19. McClatchy DB, Yates JR, 3rd (2008) Stable isotope labeling of mammals (SILAM). CSH Protoc 2008:pdb prot4940Google Scholar
  20. McClatchy DB, Liao L, Park SK, Venable JD, Yates JR (2007) Quantification of the synaptosomal proteome of the rat cerebellum during post-natal development. Genome Res 17:1378–1388CrossRefPubMedPubMedCentralGoogle Scholar
  21. Nagy A, Delgado-Escueta AV (1984) Rapid preparation of synaptosomes from mammalian brain using nontoxic isoosmotic gradient material (Percoll). J Neurochem 43:1114–1123CrossRefPubMedGoogle Scholar
  22. Ong SE, Blagoev B, Kratchmarova I, Kristensen DB, Steen H, Pandey A, Mann M (2002) Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 1:376–386CrossRefPubMedGoogle Scholar
  23. Papagiannakopoulos T, Kosik KS (2009) MicroRNA-124: micromanager of neurogenesis. Cell Stem Cell 4:375–376CrossRefPubMedGoogle Scholar
  24. Pocklington AJ, Armstrong JD, Grant SG (2006) Organization of brain complexity—synapse proteome form and function. Brief Funct Genomic Proteomic 5:66–73CrossRefPubMedGoogle Scholar
  25. Ross PL, Huang YN, Marchese JN, Williamson B, Parker K, Hattan S, Khainovski N, Pillai S, Dey S, Daniels S, Purkayastha S, Juhasz P, Martin S, Bartlet-Jones M, He F, Jacobson A, Pappin DJ (2004) Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol Cell Proteomics 3:1154–1169CrossRefPubMedGoogle Scholar
  26. Schratt G (2009) microRNAs at the synapse. Nat Rev Neurosci 10:842–849CrossRefPubMedGoogle Scholar
  27. Schrimpf SP, Meskenaite V, Brunner E, Rutishauser D, Walther P, Eng J, Aebersold R, Sonderegger P (2005) Proteomic analysis of synaptosomes using isotope-coded affinity tags and mass spectrometry. Proteomics 5:2531–2541CrossRefPubMedGoogle Scholar
  28. Siegel G, Saba R, Schratt G (2011) microRNAs in neurons: manifold regulatory roles at the synapse. Curr Opin Genet Dev 21(4):491–497CrossRefPubMedGoogle Scholar
  29. Smalheiser NR (2008) Synaptic enrichment of microRNAs in adult mouse forebrain is related to structural features of their precursors. Biol Direct 3:44CrossRefPubMedPubMedCentralGoogle Scholar
  30. Smalheiser NR, Lugli G (2009) microRNA regulation of synaptic plasticity. Neuromolecular Med 11:133–140CrossRefPubMedPubMedCentralGoogle Scholar
  31. Steward O, Schuman EM (2001) Protein synthesis at synaptic sites on dendrites. Annu Rev Neurosci 24:299–325CrossRefPubMedGoogle Scholar
  32. Sudhof TC (2004) The synaptic vesicle cycle. Annu Rev Neurosci 27:509–547CrossRefPubMedGoogle Scholar
  33. Whittaker VP, Michaelson IA, Kirkland RJ (1964) The separation of synaptic vesicles from nerve-ending particles (‘synaptosomes’). Biochem J 90:293–303CrossRefPubMedPubMedCentralGoogle Scholar
  34. Williams RW and Herrup K (1988) The control of neuron number. Ann Rev Neurosci 11:423–453CrossRefPubMedGoogle Scholar
  35. Witzmann FA, Arnold RJ, Bai F, Hrncirova P, Kimpel MW, Mechref YS, McBride WJ, Novotny MV, Pedrick NM, Ringham HN, Simon JR (2005) A proteomic survey of rat cerebral cortical synaptosomes. Proteomics 5:2177–2201CrossRefPubMedPubMedCentralGoogle Scholar
  36. Yang H, Qiao H, Tian X (2011) Proteomic analysis of cerebral synaptosomes isolated from rat model of alzheimer”s disease. Indian J Exp Biol 49(2):118–124PubMedGoogle Scholar
  37. Yelamanchili SV, Fox HS (2010) Defining larger roles for “tiny” RNA molecules: role of miRNAs in neurodegeneration research. J Neuroimmune Pharmacol 5(1):63–69CrossRefPubMedGoogle Scholar
  38. Zhu H, Pan S, Gu S, Bradbury EM, Chen X (2002) Amino acid residue specific stable isotope labeling for quantitative proteomics. Rapid Commun Mass Spectrom 16:2115–2123CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Gurudutt Pendyala
    • 1
    Email author
  • James L. Buescher
    • 1
  • Howard S. Fox
    • 1
  1. 1.Department of Pharmacology and Experimental NeuroscienceUniversity of Nebraska Medical CenterOmahaUSA

Personalised recommendations