In Vitro and In Vivo Antibacterial and Antifungal Screening of Natural Plant Products: Prospective Standardization of Basic Methods

  • José Vitor Lima-Filho
  • Rossana de Aguiar Cordeiro
Part of the Springer Protocols Handbooks book series (SPH)


Researchers have conducted tests for antimicrobial activity of natural products by several methods, and a huge collection of results has been generated. However, the lack of standardization of basic methods of investigation has led to accumulation of non-useful data. The diversity of protocols has created divergences among specialists, and often different results are obtained with the same plant extract. Although antimicrobial tests for natural products have not been standardized by regulatory agencies, in this chapter, we recommend the use of some technical parameters for susceptibility testing reviewed by the Clinical and Laboratories Standards Institute.

Key words

Agar-diffusion assay Microdilution assay Essential oil Plant extract 


  1. 1.
    World Health Organization (2012) World health statistics.
  2. 2.
    Hoffmann S, Batz MB, Morris JG Jr (2012) Annual cost of illness and quality-adjusted life year losses in the United States due to 14 foodborne pathogens. J Food Prot 75:1292–1302PubMedCrossRefGoogle Scholar
  3. 3.
    Hawkey PM, Jones AM (2009) The changing epidemiology of resistance. J Antimicrob Chemother 64(suppl 1):i3–i10PubMedCrossRefGoogle Scholar
  4. 4.
    Johnson T, Jordan D, Kariyawasam S et al (2010) Sequence analysis and characterization of a transferable hybrid plasmid encoding multidrug resistance and enabling zoonotic potential for extraintestinal Escherichia coli. Infect Immun 78:1931–1942PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Cercenado E (2010) Update of antimicrobial resistance in Gram-positive microorganisms. Med Clin (Barc) 135(3):10–15CrossRefGoogle Scholar
  6. 6.
    Baquero F (2012) Metagenomic epidemiology: a public health need for the control of antimicrobial resistance. Clin Microbiol Infect 18(4):67–73PubMedCrossRefGoogle Scholar
  7. 7.
    Oliveira ACD, Reis SMM, Vasconcellos AG (2011) Technological prospecting for patents on herbal medicines in Brazil. Int Res J Biotechnol 2(5):78–84Google Scholar
  8. 8.
    Fabricant DS, Farnsworth NR (2001) The value of plants used in traditional medicine for drug discovery. Environ Health Perspect 109(1):69–75PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Albuquerque UP (2010) Implications of ethnobotanical studies on bioprospecting strategies of new drugs in semi-arid regions. Open Complement Med J 2:21–23CrossRefGoogle Scholar
  10. 10.
    Jones WP, Kinghorn AD (2012) Extraction of plant secondary metabolites. Methods Mol Biol 864:341–366PubMedCrossRefGoogle Scholar
  11. 11.
    Cos P, Vlietinck AJ, Berghe DV (2006) Anti-infective potential of natural products: how to develop a stronger in vitro “proof-of-concept”. J Ethnopharmacol 106:290–302PubMedCrossRefGoogle Scholar
  12. 12.
    Hili P, Evans CS, Veness RG (1997) Antimicrobial action of essential oils: the effect of dimethylsulphoxide on the activity of cinnamon oil. Lett Appl Microbiol 24(4):269–275PubMedCrossRefGoogle Scholar
  13. 13.
    Basch H, Gadebusch HH (1968) In vitro antimicrobial activity of dimethylsulfoxide. Appl Microbiol 16(12):1953PubMedCentralPubMedGoogle Scholar
  14. 14.
    Ramos SCS, Oliveira JC, Câmara CAG et al (2009) Antibacterial and cytotoxic properties of some plant crude extracts used in Northeastern folk medicine. Braz J Pharmacog 19(2A):376–381Google Scholar
  15. 15.
    Silva AB, Silva T, Franco ES et al (2010) Antibacterial activity, chemical composition, and cytotoxicity of leaf’s essential oil from Brazilian pepper tree (Schinus terebinthifolius, Raddi). Braz J Microbiol 41:158–163PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Toyang NJ, Ateh EN, Keiser J et al (2012) Toxicity, antimicrobial and anthelmintic activities of Vernonia guineensis Benth. (Asteraceae) crude extracts. J Ethnopharmacol 144(3):700–704. doi: 10.1016/j.jep.2012.10.016 PubMedCrossRefGoogle Scholar
  17. 17.
    Clinical and Laboratory Standards Institute (2003) Guideline M2-A8, standardization of sensitivity tests with antimicrobials by disc-diffusion. CLSI, Wayne, PAGoogle Scholar
  18. 18.
    Clinical and Laboratory Standards Institute (2008) Guideline M27-A3, Reference method for broth dilution antifungal susceptibility testing of yeast. CLSI, Wayne, PAGoogle Scholar
  19. 19.
    Clinical Laboratory Standards Institute (2008) Guideline M38-A2, Reference method for broth dilution antifungals susceptibility testing of conidium-forming filamentous fungi: approved standard. CLSI, Wayne, PAGoogle Scholar
  20. 20.
    Donsìb F, Annunziataa M, Vincensia M et al (2012) Design of nanoemulsion-based delivery systems of natural antimicrobials: effect of the emulsifier. J Biotechnol 159:342–350CrossRefGoogle Scholar
  21. 21.
    Xu SX, Li YC, Liu X et al (2012) In vitro and in vivo antifungal activity of a water-dilutable cassia oil microemulsion against Geotrichum citri-aurantii. J Sci Food Agric 92(13):2668–2671PubMedCrossRefGoogle Scholar
  22. 22.
    Bauer AW, Kirby WM, Sherris JC et al (1966) Antibiotic susceptibility testing by a standardized single disk method. Tech Bull Regist Med Technol 36(3):49–52PubMedGoogle Scholar
  23. 23.
    Cowan MM (1999) Plant products as antimicrobial agents. Clin Microbiol Rev 12:564–582PubMedCentralPubMedGoogle Scholar
  24. 24.
    Hammer KA, Carson CF, Riley TV (1999) Antimicrobial activity of essential oils and other plant extracts. J Appl Microbiol 86:985–990PubMedCrossRefGoogle Scholar
  25. 25.
    Dorman HJD, Deans SG (2000) Antimicrobial agents from plants: antibacterial activity of plant volatile oils. J Appl Microbiol 88:308–316PubMedCrossRefGoogle Scholar
  26. 26.
    Rabanal RM, Arias A, Prado B (2002) Antimicrobial studies on three species of Hypericum from the Canary Islands. J Ethnopharmacol 81:287–292PubMedCrossRefGoogle Scholar
  27. 27.
    Springfield EP, Amabeoku G, Weitz F et al (2003) An assessment of two Carpobrotus species extracts as potential antimicrobial agents. Phytomedicine 10:434–439PubMedCrossRefGoogle Scholar
  28. 28.
    Voravuthikunchai S, Lortheeranuwat A, Jeeju W et al (2004) Effective medicinal plants against enterohaemorrhagic Escherichia coli. J Ethnopharmacol 94:49–54PubMedCrossRefGoogle Scholar
  29. 29.
    Kaewpiboon C, Lirdprapamongkol K, Srisomsap C (2012) Studies of the in vitro cytotoxic, antioxidant, lipase inhibitory and antimicrobial activities of selected Thai medicinal plants. BMC Complement Altern Med 12(1):217PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Fontenelle RO, Morais SM, Brito EH et al (2007) Chemical composition, toxicological aspects and antifungal activity of essential oil from Lippia sidoides Cham. J Antimicrob Chemother 59(5):934–940PubMedCrossRefGoogle Scholar
  31. 31.
    Badiee P, Alborzi A, Moeini M et al (2012) Antifungal susceptibility of the Aspergillus species by Etest and CLSI reference methods. Arch Iran Med 15(7):429–432PubMedGoogle Scholar
  32. 32.
    Klančnik A, Piskernik S, Jeršek B et al (2010) Evaluation of diffusion and dilution methods to determine the antibacterial activity of plant extracts. J Microbiol Methods 81:121–126PubMedCrossRefGoogle Scholar
  33. 33.
    Eloff JN (1998) A sensitive and quick microplate method to determine the minimal inhibitory concentration of plant extracts for bacteria. Planta Med 64:711–713PubMedCrossRefGoogle Scholar
  34. 34.
    Schwarz S, Silley P, Simjee S et al (2010) Editorial: assessing the antimicrobial susceptibility of bacteria obtained from animals. J Antimicrob Chemother 65:601–604. doi: 10.1093/jac/dkq037 PubMedCrossRefGoogle Scholar
  35. 35.
    Abreu A, McBainb AJ, Simões M (2012) Plants as sources of new antimicrobials and resistance-modifying agents. Nat Prod Rep 29:1007–1021PubMedCrossRefGoogle Scholar
  36. 36.
    Lima-Filho JV, Marinho J, Silva AB et al (2010) Proteins from latex of Calotropis procera prevent septic shock due to lethal infection by Salmonella enterica serovar Typhimurium. J Ethnopharmacol 129:327–334PubMedCrossRefGoogle Scholar
  37. 37.
    Oliveira RSB, Figueiredo IS, Freitas LB (2012) Inflammation induced by phytomodulatory proteins from the latex of Calotropis procera (Asclepiadaceae) protects against Salmonella infection in a murine model of typhoid fever. Inflamm Res 61:689–698PubMedCrossRefGoogle Scholar
  38. 38.
    Portillo FG (2001) Salmonella intracellular proliferation: where, when and how? Microbes Infect 3:1305–1311CrossRefGoogle Scholar
  39. 39.
    Dougan G, John V, Palmer S et al (2011) Immunity to salmonellosis. Immunol Rev 240:196–210PubMedCrossRefGoogle Scholar
  40. 40.
    Libby SJ, Brehm MA, Greiner DL (2010) Humanized nonobese diabetic-scid IL2rgammanull mice are susceptible to lethal Salmonella Typhi infection. Proc Natl Acad Sci U S A 107:15589–15594PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Demuth A, Goebel W, Beuscher HU (1996) Differential regulation of cytokine and cytokine receptor mRNA expression upon infection of bone marrow-derived macrophages with Listeria monocytogenes. Infect Immun 64:347583Google Scholar
  42. 42.
    Vázquez-Boland JA, Kuhn M, Berche P (2001) Listeria pathogenesis and molecular virulence determinants. Clin Microbiol Rev 14:584–640PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    Hof F, Nichterlein TE, Kretschmar M (1997) Management of listeriosis. Clin Microbiol Rev 10:345–357PubMedCentralPubMedGoogle Scholar
  44. 44.
    Van Der Horst CM, Saag MS, Cloud GA et al (1997) Treatment of cryptococcal meningitis associated with the acquired immunodeficiency syndrome. N Engl J Med 337:15–21PubMedCrossRefGoogle Scholar
  45. 45.
    Capilla J, Maffei CM, Clemons KV et al (2006) Experimental systemic infection with Cryptococcus neoformans var. grubii and Cryptococcus gattii in normal and immunodeficient mice. Med Mycol 44:601–610PubMedCrossRefGoogle Scholar
  46. 46.
    Chakrabarti A (2007) Epidemiology of central nervous system mycoses. Neurol India 55:191–197PubMedCrossRefGoogle Scholar
  47. 47.
    Medeiros CS, Pontes-Filho NT, Camara CA et al (2010) Antifungal activity of the naphthoquinone beta-lapachone against disseminated infection with Cryptococcus neoformans var. neoformans in dexamethasone-immunosuppressed Swiss mice. Braz J Med Biol Res 43:345–349PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • José Vitor Lima-Filho
    • 1
  • Rossana de Aguiar Cordeiro
    • 2
  1. 1.Laboratory of Microbiology and Immunology, Department of BiologyFederal Rural University of PernambucoRecifeBrazil
  2. 2.Department of Pathology and Legal MedicineFederal University of CearáFortalezaBrazil

Personalised recommendations