Skip to main content

Syngeneic Murine Metastasis Models: B16 Melanoma

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1070))

Abstract

The murine B16 melanoma is one of the most used tumor models, its application having been used to determine the mechanisms associated with the metastatic process and the development of anticancer therapies. The B16 melanoma was originally established by Fidler and collaborators as a tumor line metastasizing to the lung. Since that time a variety of cell lines have been derived, in vitro or in vivo, having different metastatic behaviors.

The methods used to obtain artificial metastases to the lung through the intravenous injection of B16 melanoma cells and spontaneous metastasis formation following cancer cell growth in the footpad are described in this chapter.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Poste G, Fidler IJ (1980) The pathogenesis of cancer metastasis. Nature 283:139–146

    Article  PubMed  CAS  Google Scholar 

  2. Giavazzi R (1991) Metastatic models. In: Boven E, Winograd B (eds) The nude mouse in oncology research. CRC, Boca Raton, FL, pp 117–132

    Google Scholar 

  3. Rygaard J (1994) Animal models in cancer research. In: Svendsen P, Hau J (eds) Handbook of laboratory animal science. CRC, Boca Raton, FL, pp 199–208

    Google Scholar 

  4. Fidler IJ (1973) Selection of successive tumour lines for metastasis. Nat New Biol 242:148–149

    Article  PubMed  CAS  Google Scholar 

  5. Talmadge JE, Fidler IJ (1982) Cancer metastasis is selective or random depending on the parent tumour population. Nature 297:593–594

    Article  PubMed  CAS  Google Scholar 

  6. Hart IR (1979) The selection and characterization of an invasive variant of the B16 melanoma. Am J Pathol 97:587–600

    PubMed  CAS  Google Scholar 

  7. Stackpole CW (1981) Distinct lung-colonizing and lung-metastasizing cell populations in B16 mouse melanoma. Nature 289:798–800

    Article  PubMed  CAS  Google Scholar 

  8. Chirivi RG, Garofalo A, Crimmin MJ, Bawden LJ, Stoppacciaro A, Brown PD, Giavazzi R (1994) Inhibition of the metastatic spread and growth of B16-BL6 murine melanoma by a synthetic matrix metalloproteinase inhibitor. Int J Cancer 58:460–464

    Article  PubMed  CAS  Google Scholar 

  9. Fidler IJ (1978) General considerations for studies of experimental cancer metastasis. In: Busch H (ed) Methods in cancer research, vol 15. Academic, New York, pp 399–439

    Google Scholar 

  10. Welch DR (1997) Technical considerations for studying cancer metastasis in vivo. Clin Exp Metastasis 15:272–306

    Article  PubMed  CAS  Google Scholar 

  11. Weissleder R, Pittet MJ (2008) Imaging in the era of molecular oncology. Nature 452:580–589

    Article  PubMed  CAS  Google Scholar 

  12. Hirayama R, Hirokawa K, Makinodan T (1985) Change in the metastatic mode of B16 malignant melanoma in C57BL/6 mice with ageing and sex. IARC Sci Publ 58:85–96

    PubMed  Google Scholar 

  13. Institute for Laboratory Animal Research (1996) Guide for the care and use of laboratory animals. National Academy, Washington, DC

    Google Scholar 

  14. United Kingdom Co-ordinating Committee on Cancer Research (UKCCCR) (1998) Guidelines for the welfare of animals in experimental neoplasia (second edition). Br J Cancer 77:1–10

    Google Scholar 

  15. Hagmar B, Norrby K (1973) Influence of cultivation, trypsinization and aggregation on the transplantability of melanoma B16 cells. Int J Cancer 11:663–675

    Article  PubMed  CAS  Google Scholar 

  16. Fidler IJ (1973) The relationship of embolic homogeneity, number, size and viability to the incidence of experimental metastasis. Eur J Cancer 9:223–227

    Article  PubMed  CAS  Google Scholar 

  17. Landy A (1989) Dynamic, structural, and regulatory aspects of lambda site-specific recombination. Annu Rev Biochem 58:913–949

    Article  PubMed  CAS  Google Scholar 

  18. Craft N, Bruhn KW, Nguyen BD, Prins R, Liau LM, Collisson EA, De A, Kolodney MS, Gambhir SS, Miller JF (2005) Bioluminescent imaging of melanoma in live mice. J Invest Dermatol 125:159–165

    Article  PubMed  CAS  Google Scholar 

  19. Niers TM, Bruggemann LW, Klerk CP, Muller FJ, Buckle T, Reitsma PH, Richel DJ, Spek CA, Van Tellingen O, Van Noorden CJ (2009) Differential effects of anticoagulants on tumour development of mouse cancer cell lines B16, K1735 and CT26 in lung. Clin Exp Metastasis 26:171–178

    Article  PubMed  CAS  Google Scholar 

  20. Hyoudou K, Nishikawa M, Kobayashi Y, Kuramoto Y, Yamashita F, Hashida M (2006) Inhibition of adhesion and proliferation of peritoneally disseminated tumour cells by pegylated catalase. Clin Exp Metastasis 23:269–278

    Article  PubMed  CAS  Google Scholar 

  21. Yang M, Jiang P, An Z, Baranov E, Li L, Hasegawa S, Al-Tuwaijri M, Chishima T, Shimada H, Moossa AR, Hoffman RM (1999) Genetically fluorescent melanoma bone and organ metastasis models. Clin Cancer Res 5:3549–3559

    PubMed  CAS  Google Scholar 

  22. Amoh Y, Bouvet M, Li L, Tsuji K, Moossa AR, Katsuoka K, Hoffman RM (2006) Visualization of nascent tumour angiogenesis in lung and liver metastasis by differential dual-color fluorescence imaging in nestin-linked-GFP mice. Clin Exp Metastasis 23:315–322

    Article  PubMed  Google Scholar 

  23. Shaner NC, Campbell RE, Steinbach PA, Giepmans BN, Palmer AE, Tsien RY (2004) Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat Biotechnol 22:1567–1572

    Article  PubMed  CAS  Google Scholar 

  24. Shcherbo D, Merzlyak EM, Chepurnykh TV, Fradkov AF, Ermakova GV, Solovieva EA, Lukyanov KA, Bogdanova EA, Zaraisky AG, Lukyanov S, Chudakov DM (2007) Bright far-red fluorescent protein for whole-body imaging. Nat Methods 4:741–746

    Article  PubMed  CAS  Google Scholar 

  25. Shu X, Royant A, Lin MZ, Aguilera TA, Lev-Ram V, Steinbach PA, Tsien RY (2009) Mammalian expression of infrared fluorescent proteins engineered from a bacterial phytochrome. Science 324:804–807

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Funding from The Fondazione Cariplo and the Italian Association for Cancer Research (AIRC) is acknowledged. A.D. is the recipient of a fellowship from the Italian Foundation for Cancer Research (FIRC).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Giavazzi, R., Decio, A. (2014). Syngeneic Murine Metastasis Models: B16 Melanoma. In: Dwek, M., Schumacher, U., Brooks, S. (eds) Metastasis Research Protocols. Methods in Molecular Biology, vol 1070. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4614-8244-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8244-4_10

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4614-8243-7

  • Online ISBN: 978-1-4614-8244-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics