Skip to main content

Collection and Handling of Blood Specimens for Peptidomics

  • Protocol
  • First Online:
The Low Molecular Weight Proteome

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1023))

Abstract

Pre-analytical variables can alter the analysis of blood-derived samples. In particular sample collection and specimen preparation can alter the validity of results obtained by modern multiplex assays (e.g., LC-MS). Low-molecular-weight proteins (peptides) as products of proteolytic cleavage events exhibit a close connection to protease activity. Increased or altered activity of proteases during sample collection, specimen generation, sample storage, and processing is mirrored by alterations in abundance of specific peptides. Awareness of clinical practices in medical laboratories and the current knowledge allow for identification of specific variables that affect the results of a peptidomic study. Knowledge of pre-analytical variables is a prerequisite to understand and control their impact.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schrader M, Schulz-Knappe P (2001) Peptidomics technologies for human body fluids. Trends Biotechnol 19:55–60

    Article  Google Scholar 

  2. Baggerman G, Verleyen P, Clynen E, Huybrechts J, De Loof A, Schoofs L (2004) Peptidomics. J Chromatogr B Analyt Technol Biomed Life Sci 803:3–16

    Article  PubMed  CAS  Google Scholar 

  3. Soloviev M, Finch P (2005) Peptidomics, current status. J Chromatogr B Analyt Technol Biomed Life Sci 815:11–24

    Article  PubMed  CAS  Google Scholar 

  4. Tammen H, Zucht HD, Budde P (2007) Oncopeptidomics - a commentary on opportunities and limitations. Cancer Lett 249:80–86

    Article  PubMed  CAS  Google Scholar 

  5. Schulz-Knappe P, Zucht HD, Heine G, Jurgens M, Hess R, Schrader M (2001) Peptidomics: the comprehensive analysis of peptides in complex biological mixtures. Comb Chem High Throughput Screen 4:207–217

    Article  PubMed  CAS  Google Scholar 

  6. Pierson J, Norris JL, Aerni HR, Svenningsson P, Caprioli RM, Andren PE (2004) Molecular profiling of experimental Parkinson’s disease: direct analysis of peptides and proteins on brain tissue sections by MALDI mass spectrometry. J Proteome Res 3:289–295

    Article  PubMed  CAS  Google Scholar 

  7. Pasinetti GM, Ungar LH, Lange DJ, Yemul S, Deng H, Yuan X et al (2006) Identification of potential CSF biomarkers in ALS. Neurology 66:1218–1222

    Article  PubMed  CAS  Google Scholar 

  8. Sasaki K, Sato K, Akiyama Y, Yanagihara K, Oka M, Yamaguchi K (2002) Peptidomics-based approach reveals the secretion of the 29-residue COOH-terminal fragment of the putative tumor suppressor protein DMBT1 from pancreatic adenocarcinoma cell lines. Cancer Res 62:4894–4898

    PubMed  CAS  Google Scholar 

  9. Zhang X, Wei D, Yap Y, Li L, Guo S, Chen F (2007) Mass spectrometry-based “omics” technologies in cancer diagnostics. Mass Spectrom Rev 26:403–431

    Article  PubMed  CAS  Google Scholar 

  10. Lopez MF, Mikulskis A, Kuzdzal S, Golenko E, Petricoin EF III, Liotta LA et al (2007) A novel, high-throughput workflow for discovery and identification of serum carrier protein-bound Peptide biomarker candidates in ovarian cancer samples. Clin Chem 53:1067–1074

    Article  PubMed  CAS  Google Scholar 

  11. Overall CM, Blobel CP (2007) In search of partners: linking extracellular proteases to substrates. Nat Rev Mol Cell Biol 8:245–257

    Article  PubMed  CAS  Google Scholar 

  12. Rai AJ, Vitzthum F (2006) Effects of preanalytical variables on peptide and protein measurements in human serum and plasma: implications for clinical proteomics. Expert Rev Proteomics 3:409–426

    Article  PubMed  CAS  Google Scholar 

  13. Rai AJ, Gelfand CA, Haywood BC, Warunek DJ, Yi J, Schuchard MD et al (2005) HUPO plasma proteome project specimen collection and handling: towards the standardization of parameters for plasma proteome samples. Proteomics 5:3262–3277

    Article  PubMed  CAS  Google Scholar 

  14. Hsieh SY, Chen RK, Pan YH, Lee HL (2006) Systematical evaluation of the effects of sample collection procedures on low-molecular-weight serum/plasma proteome profiling. Proteomics 6:3189–3198

    Article  PubMed  CAS  Google Scholar 

  15. Omenn GS, States DJ, Adamski M, Blackwell TW, Menon R, Hermjakob H et al (2005) Overview of the HUPO plasma proteome project: results from the pilot phase with 35 collaborating laboratories and multiple analytical groups, generating a core dataset of 3020 proteins and a publicly-available database. Proteomics 5:3226–3245

    Article  PubMed  CAS  Google Scholar 

  16. Tammen H, Schulte I, Hess R, Menzel C, Kellmann M, Mohring T et al (2005) Peptidomic analysis of human blood specimens: comparison between plasma specimens and serum by differential peptide display. Proteomics 5:3414–3422

    Article  PubMed  CAS  Google Scholar 

  17. Koomen JM, Li D, Xiao LC, Liu TC, Coombes KR, Abbruzzese J et al (2005) Direct tandem mass spectrometry reveals limitations in protein profiling experiments for plasma biomarker discovery. J Proteome Res 4:972–981

    Article  PubMed  CAS  Google Scholar 

  18. Evans MJ, Livesey JH, Ellis MJ, Yandle TG (2001) Effect of anticoagulants and storage temperatures on stability of plasma and serum hormones. Clin Biochem 34:107–112

    Article  PubMed  CAS  Google Scholar 

  19. Guder WG, Narayanan S, Wisser H, Zawta B (2003) Samples: from the patient to the laboratory. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany

    Book  Google Scholar 

  20. Tammen H, Schulte I, Hess R, Menzel C, Kellmann M, Schulz-Knappe P (2005) Prerequisites for peptidomic analysis of blood samples: I. Evaluation of blood specimen qualities and determination of technical performance characteristics. Comb Chem High Throughput Screen 8:725–733

    Article  PubMed  CAS  Google Scholar 

  21. Villanueva J, Shaffer DR, Philip J, Chaparro CA, Erdjument-Bromage H, Olshen AB et al (2006) Differential exoprotease activities confer tumor-specific serum peptidome patterns. J Clin Invest 116:271–284

    Article  PubMed  CAS  Google Scholar 

  22. Liotta LA, Petricoin EF (2006) Serum peptidome for cancer detection: spinning biologic trash into diagnostic gold. J Clin Invest 116:26–30

    Article  PubMed  CAS  Google Scholar 

  23. Landi MT, Caporaso N (1997) Sample collection, processing and storage, IARC Sci Publ 142:223–236

    Google Scholar 

  24. Holland NT, Smith MT, Eskenazi B, Bastaki M (2003) Biological sample collection and processing for molecular epidemiological studies. Mutat Res 543:217–234

    Article  PubMed  CAS  Google Scholar 

  25. Pfeifer PH, Brems JJ, Brunson M, Hugli TE (2000) Plasma C3a and C4a levels in liver transplant recipients: a longitudinal study. Immunopharmacology 46:163–174

    Article  PubMed  CAS  Google Scholar 

  26. Plebani M, Carraro P (1997) Mistakes in a stat laboratory: types and frequency. Clin Chem 43:1348–1351

    PubMed  CAS  Google Scholar 

  27. Burtis CA, Ashwood ER (2001) Fundamentals of clinical chemistry. WB Saunders Company, Philadelphia, PA

    Google Scholar 

  28. Favaloro EJ, Soltani S, McDonald J (2004) Potential laboratory misdiagnosis of hemophilia and von Willebrand disorder owing to cold activation of blood samples for testing. Am J Clin Pathol 122:686–692

    Article  PubMed  CAS  Google Scholar 

  29. Mustard JF, Kinlough-Rathbone RL, Packham MA (1989) Isolation of human platelets from plasma by centrifugation and washing. Methods Enzymol 169:3–11

    Article  PubMed  CAS  Google Scholar 

  30. Schuchard MD, Mehigh RJ, Cockrill SL, Lipscomb GT, Stephan JD, Wildsmith J et al (2005) Artifactual isoform profile modification following treatment of human plasma or serum with protease inhibitor, monitored by 2-dimensional electrophoresis and mass spectrometry. Biotechniques 39:239–247

    Article  PubMed  CAS  Google Scholar 

  31. Hulmes JD, Bethea D, Ho K, Huang S-P, Ricci DL, Opiteck GJ, Hefta SA (2004) An investi­gation of plasma collection, stabilization, and storage procedures for proteomic analysis of clinical samples. Humana Press, Totowa, USA

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Tammen, H., Hess, R. (2013). Collection and Handling of Blood Specimens for Peptidomics. In: Bäckvall, H., Lehtiö, J. (eds) The Low Molecular Weight Proteome. Methods in Molecular Biology, vol 1023. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7209-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7209-4_10

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-7167-7

  • Online ISBN: 978-1-4614-7209-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics