Skip to main content

Proteomic Methods for the Identification of Intrinsically Disordered Proteins

  • Protocol
  • First Online:
Intrinsically Disordered Protein Analysis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 896))

Abstract

Intrinsically disordered proteins (IDPs) lack fixed 3D structure under physiological conditions, yet they often carry out critically important physiological functions. The first few disordered proteins have been discovered one-by-one from clues that suggested that a protein lacks structure. Since bioinformatic predictions suggest that a large portion of eukaryotic proteomes contains significant levels of protein disorder, a reliable method for the large-scale separation and identification of these proteins is needed. IDPs do not undergo large-scale structural changes and aggregation at low pH or elevated temperatures. Thus, such proteins are likely to remain soluble under these extreme conditions, making acid treatment and/or heat treatment suitable for substantial enrichment of intrinsically unfolded proteins in the soluble fraction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cortese MS, Baird JP, Uversky VN, Dunker AK (2005) Uncovering the unfoldome: enriching cell extracts for unstructured proteins by acid treatment. J Proteome Res 4:1610–1618

    Article  PubMed  CAS  Google Scholar 

  2. Uversky VN, Gillespie JR, Millett IS, Khodyakova AV, Vasiliev AM, Chernovskaya TV, Vasilenko RN, Kozlovskaya GD, Dolgikh DA, Fink AL, Doniach S, Abramov VM (1999) Natively unfolded human prothymosin alpha adopts partially folded collapsed conformation at acidic pH. Biochemistry 38:15009–15016

    Article  PubMed  CAS  Google Scholar 

  3. Dill KA, Shortle D (1991) Denatured states of proteins. Annu Rev Biochem 60:795–825

    Article  PubMed  CAS  Google Scholar 

  4. Fink AL, Calciano LJ, Goto Y, Kurotsu T, Palleros DR (1994) Classification of acid denaturation of proteins: intermediates and unfolded states. Biochemistry 33:12504–12511

    Article  PubMed  CAS  Google Scholar 

  5. Sivaraman T, Kumar TK, Jayaraman G, Yu C (1997) The mechanism of 2,2,2-trichloroacetic acid-induced protein precipitation. J Protein Chem 16:291–297

    Article  PubMed  CAS  Google Scholar 

  6. Schafer K, Magnusson U, Scheffel F, Schiefner A, Sandgren MO, Diederichs K, Welte W, Hulsmann A, Schneider E, Mowbray SL (2004) X-ray structures of the maltose-maltodextrin-binding protein of the thermoacidophilic bacterium Alicyclobacillus acidocaldarius provide insight into acid stability of proteins. J Mol Biol 335:261–274

    Article  PubMed  CAS  Google Scholar 

  7. Roychaudhuri R, Sarath G, Zeece M, Markwell J (2004) Stability of the allergenic soybean Kunitz trypsin inhibitor. Biochim Biophys Acta 1699:207–212

    PubMed  CAS  Google Scholar 

  8. Tucker DL, Tucker N, Conway T (2002) Gene expression profiling of the pH response in Escherichia coli. J Bacteriol 184:6551–6558

    Article  PubMed  CAS  Google Scholar 

  9. Gorg A, Postel W, Friedrich C, Kuick R, Strahler JR, Hanash SM (1991) Temperature-dependent spot positional variability in two-dimensional polypeptide patterns. Electrophoresis 12:653–658

    Article  PubMed  CAS  Google Scholar 

  10. Sabounchi-Schutt F, Astrom J, Olsson I, Eklund A, Grunewald J, Bjellqvist B (2000) An immobiline DryStrip application method enabling high-capacity two-dimensional gel electrophoresis. Electrophoresis 21:3649–3656

    Article  PubMed  CAS  Google Scholar 

  11. Gorg A, Postel W, Domscheit A, Gunther S (1988) Two-dimensional electrophoresis with immobilized pH gradients of leaf proteins from barley (Hordeum vulgare): method, reproducibility and genetic aspects. Electrophoresis 9:681–692

    Article  PubMed  CAS  Google Scholar 

  12. Galea CA, Pagala VR, Obenauer JC, Park CG, Slaughter CA, Kriwacki RW (2006) Proteomic studies of the intrinsically unstructured mammalian proteome. J Proteome Res 5:2839–2848

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this protocol

Cite this protocol

Tantos, A., Tompa, P. (2012). Proteomic Methods for the Identification of Intrinsically Disordered Proteins. In: Uversky, V., Dunker, A. (eds) Intrinsically Disordered Protein Analysis. Methods in Molecular Biology, vol 896. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3704-8_29

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-3704-8_29

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-3703-1

  • Online ISBN: 978-1-4614-3704-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics