Skip to main content

Identifying Solubility-Promoting Buffers for Intrinsically Disordered Proteins Prior to Purification

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 896))

Abstract

Intrinsically disordered proteins are anticipated to be more prone to aggregation than folded, stable proteins. Chemical additives included in the buffer can help maintain proteins in a soluble, monomeric state. However, the array of chemicals that impact protein solubility is staggering, precluding iterative testing of chemical conditions during purification. Herein, we describe a filter-based aggregation assay to rapidly identify chemical additives that maintain solubility for a protein of interest. A hierarchical approach to buffer selection is provided, in which the type of chemical which best improves solubility is first determined, followed by identifying the optimal chemical and its most effective concentration. Finally, combinations of chemical additives can be assessed if necessary. Although this assay can be applied to purified protein, partially purified protein, or aggregated protein, this protocol specifically details the use of this assay for crude cell lysate. This approach allows identification of solubility-promoting buffers prior to the initial protein purification.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Bondos SE, Tan XX, Matthews KS (2006) Physical and genetic interactions link Hox function with diverse transcription factors and cell signaling proteins. Mol Cell Proteomics 5:824–834

    Article  PubMed  CAS  Google Scholar 

  2. Hazy E, Tompa P (2009) Limitations of induced folding in molecular recognition by intrinsically disordered proteins. Chemphyschem 10:1415–1419

    Article  PubMed  CAS  Google Scholar 

  3. Singh GP, Ganapathi M, Dash D (2007) Role of intrinsic disorder in transient interactions of hub proteins. Proteins 66:761–765

    Article  PubMed  CAS  Google Scholar 

  4. Dunker AK, Cortese MS, Romero P et al (2005) The roles of intrinsic disorder in protein interaction networks. FEBS J 272:5129–5148

    Article  PubMed  CAS  Google Scholar 

  5. Higurachi M, Ishida T, Kinoshita K (2007) Identification of transient hub proteins and the possible structural basis for their multiple interactions. Protein Sci 17:72–78

    Article  Google Scholar 

  6. Patil A, Kinoshita K, Nakamura H (2010) Hub promiscuity in protein-protein interaction networks. Int J Mol Sci 11:1930–1943

    Article  PubMed  CAS  Google Scholar 

  7. Liu Y, Matthews KS, Bondos SE (2008) Multiple intrinsically disordered sequences alter DNA binding by the homeodomain of the Drosophila Hox protein Ultrabithorax. J Biol Chem 283:20874–20887

    Article  PubMed  CAS  Google Scholar 

  8. Liu Y, Matthews KS, Bondos SE (2009) Internal regulatory interactions determine DNA binding by a Hox transcription factor. J Mol Biol 390:760–774

    Article  PubMed  CAS  Google Scholar 

  9. Iakoucheva LM, Radivojac P, Brown CJ et al (2004) The importance of intrinsic disorder for protein phosphorylation. Nucleic Acids Res 32:1037–1049

    Article  PubMed  CAS  Google Scholar 

  10. Chiti F, Dobson CM (2006) Protein misfolding, functional amyloid, and human disease. Annu Rev Biochem 75:333–366

    Article  PubMed  CAS  Google Scholar 

  11. Linding R, Schymkowitz J, Rousseau F et al (2004) A comparative study of the relationship between protein structure and β-aggregation in globular and intrinsically disordered proteins. J Mol Biol 342:345–353

    Article  PubMed  CAS  Google Scholar 

  12. Tompa P (2009) Structural disorder in amyloid fibrils: its implication in dynamic interactions of proteins. FEBS J 276:5406–5415

    Article  PubMed  CAS  Google Scholar 

  13. Oldfield JC, Cheng Y, Cortese MS et al (2005) Coupled folding and binding with α-helix forming molecular recognition elements. Biochemistry 44:12454–12470

    Article  PubMed  CAS  Google Scholar 

  14. Wright PE, Dyson HJ (2009) Linking folding and binding. Curr Opin Struct Biol 19:31–38

    Article  PubMed  CAS  Google Scholar 

  15. Uversky VN, Oldfield CJ, Midic U et al (2009) Unfoldomics of human diseases: linking protein intrinsic disorder with diseases. BMC Genomics 10:S7

    Article  PubMed  Google Scholar 

  16. Sharma AK, Ali A, Gogna R et al (2009) p53 amino-terminus region (1–125) stabilizes and restores heat denatured p53 wild phenotype. PLoS One 4(10):e7159

    Article  PubMed  Google Scholar 

  17. Bondos SE, Bicknell A (2003) Detection and prevention of protein aggregation before, during, and after purification. Anal Biochem 316:223–231

    Article  PubMed  CAS  Google Scholar 

  18. Russo D (2007) The impact of kosmotropes and chaotropes on bulk and hydration shell water dynamics in a model peptide solution. Chem Phys 345:200–211

    Article  Google Scholar 

  19. Tsumoto K, Umetsu M, Kumagai I et al (2004) Role of arginine in protein refolding, solubilization, and purification. Biotechnol Prog 20:1301–1308

    Article  PubMed  CAS  Google Scholar 

  20. Shukla D, Trout BL (2010) Interaction of arginine with proteins and the mechanism by which it inhibits aggregation. J Phys Chem B 114:13426–13438

    Article  PubMed  CAS  Google Scholar 

  21. Vagenende V, Yap MGS, Trout BL (2009) Mechanisms of protein stabilization and prevention of protein aggregation by glycerol. Biochemistry 48:11084–11096

    Article  PubMed  CAS  Google Scholar 

  22. Vidanovic D, Askrabic JM, Stankovic M et al (2003) Effects of nonionic surfactants on the physical stability of immunoglobulin G in aqueous solution during mechanical agitation. Pharmazie 58:399–404

    PubMed  CAS  Google Scholar 

  23. Zou Q, Bennion BJ, Daggett V et al (2002) The molecular mechanism of stabilization of proteins by TMAO and its ability to counteract the effects of urea. J Am Chem Soc 124:1192–1202

    Article  PubMed  CAS  Google Scholar 

  24. Shiraki K, Kudou M, Nishikori S et al (2004) Arginine ethylester prevents thermal inactivation and aggregation of lysozyme. Eur J Biochem 271:3242–3247

    Article  PubMed  CAS  Google Scholar 

  25. Bondos SE (2006) Methods for measuring protein aggregation. Curr Anal Chem 2:157–170

    Article  CAS  Google Scholar 

  26. Nielsen L, Khurana R, Coats A et al (2001) Effect of environmental factors on the kinetics of insulin fibril formation: elucidation of the molecular mechanism. Biochemistry 40:6036–6046

    Article  PubMed  CAS  Google Scholar 

  27. Han HY, Yao ZG, Gong CL et al (2010) The protective effects of osmolytes on yeast alcohol dehydrogenase conformational stability and aggregation. Protein Pept Lett 17:1058–1066

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the American Heart Association 422351 and the Texas A&M Health Science Center to SEB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah E. Bondos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this protocol

Cite this protocol

Churion, K.A., Bondos, S.E. (2012). Identifying Solubility-Promoting Buffers for Intrinsically Disordered Proteins Prior to Purification. In: Uversky, V., Dunker, A. (eds) Intrinsically Disordered Protein Analysis. Methods in Molecular Biology, vol 896. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3704-8_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-3704-8_28

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-3703-1

  • Online ISBN: 978-1-4614-3704-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics