Skip to main content

Application of Confocal Single-Molecule FRET to Intrinsically Disordered Proteins

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 896))

Abstract

Intrinsically disordered proteins (IDPs) are characterized by a large degree of conformational heterogeneity. In such cases, classical experimental methods often yield only mean values, averaged over the entire ensemble of molecules. The microscopic distributions of conformations, trajectories, or sequences of events often remain unknown, and with them the underlying molecular mechanisms. Signal averaging can be avoided by observing individual molecules. A particularly versatile method is highly sensitive fluorescence detection. In combination with Förster resonance energy transfer (FRET), distances and conformational dynamics can be investigated in single molecules. This chapter introduces the practical aspects of applying confocal single-molecule FRET experiments to the study of IDPs.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

Notes

  1. 1.

    The limiting factor for the time resolution currently is the jitter of APDs in the range of 100 ps.

  2. 2.

    The mean squared distance between the attachment points can be estimated from \( \left\langle {{r^2}} \right\rangle = 2{l_{\rm{p}}}{l_{\rm{c}}} \), where l p is the persistence length of the IDP, typically in the range between 0.2 and 0.4 nm (19, 39) in the absence of strong charge repulsion (40), and l c is the contour length of the segment, which can be calculated as N∙0.38 nm, where N corresponds to the number of peptide bonds in the segment (19). The observed transfer efficiency can then be estimated from Eq. (5).

  3. 3.

    For preliminary screens or in case the sequential labeling procedure is not feasible, both dyes can be added simultaneously. In many cases, the fraction of molecules that contain only donor chromophores can be reduced by empirically varying the ratio of donor and acceptor dye in the reaction. Even relatively large proportions of “donor only” molecules can be tolerated in single molecule experiments because of the separation of subpopulations, but a high-quality sample preparation will simplify data acquisition, analysis, and interpretation greatly.

  4. 4.

    \( \int_a^{{{l_{\rm{c}}}}} {P(r)} {\hbox{d}}r = 1 \).

  5. 5.

    Note that the averaging has to be done over the transfer rate constant k t, i.e. \( \left\langle E\, \right\rangle = {{1} / {{( {1 + {k_{\rm{D}}}/\int_a^{{{l_{\rm{c}}}}} {{k_{\rm{t}}}(r)P(r){\hbox{d}}r} })}}} \), where \( {k_{\rm{t}}}(r) = {k_{\rm{D}}}{\left( {{{{{R_0}}} \left/ {r} \right.}} \right)^6} \), and k D is the fluorescence decay rate constant of the donor in the absence of the acceptor.

References

  1. Förster T (1948) Zwischenmolekulare Energiewanderung und Fluoreszenz. Annalen der Physik 6:55–75

    Article  Google Scholar 

  2. Ha T, Enderle T, Ogletree DF et al (1996) Probing the interaction between two single molecules: fluorescence resonance energy transfer between a single donor and a single acceptor. Proc Natl Acad Sci U S A 93:6264–6268

    Article  PubMed  CAS  Google Scholar 

  3. Haas E, Katchalskikatzir E, Steinberg IZ (1978) Brownian-motion of ends of oligopeptide chains in solution as estimated by energy-transfer between chain ends. Biopolymers 17:11–31

    Article  CAS  Google Scholar 

  4. Vix A, Lami H (1995) Protein fluorescence decay—discrete components or distribution of lifetimes—really no way out of the dilemma. Biophys J 68:1145–1151

    Article  PubMed  CAS  Google Scholar 

  5. Jia YW, Talaga DS, Lau WL et al (1999) Folding dynamics of single GCN4 peptides by fluorescence resonant energy transfer confocal microscopy. Chem Phys 247:69–83

    Article  CAS  Google Scholar 

  6. Talaga DS, Lau WL, Roder H et al (2000) Dynamics and folding of single two-stranded coiled-coil peptides studied by fluorescent energy transfer confocal microscopy. Proc Natl Acad Sci U S A 97:13021–13026

    Article  PubMed  CAS  Google Scholar 

  7. Deniz AA, Laurence TA, Beligere GS et al (2000) Single-molecule protein folding: diffusion fluorescence resonance energy transfer studies of the denaturation of chymotrypsin inhibitor 2. Proc Natl Acad Sci U S A 97:5179–5184

    Article  PubMed  CAS  Google Scholar 

  8. Schuler B, Lipman EA, Eaton WA (2002) Probing the free-energy surface for protein folding with single-molecule fluorescence spectroscopy. Nature 419:743–747

    Article  PubMed  CAS  Google Scholar 

  9. Schuler B, Eaton WA (2008) Protein folding studied by single-molecule FRET. Curr Opin Struct Biol 18:16–26

    Article  PubMed  CAS  Google Scholar 

  10. Schuler B, Haran G (2008)) In: Rigler R, Vogel H (eds) Single molecules and nanotechnology, vol 12. Springer, Berlin, pp 181–216

    Chapter  Google Scholar 

  11. Ferreon AC, Moran CR, Gambin Y et al (2010) Single-molecule fluorescence studies of intrinsically disordered proteins. Methods Enzymol 472:179–204

    Article  PubMed  CAS  Google Scholar 

  12. Van Der Meer BW, Coker G III, Chen SYS (1994) Resonance energy transfer: theory and data. VCH Publishers, Inc., New York, NY

    Google Scholar 

  13. Deniz AA, Laurence TA, Dahan M et al (2001) Ratiometric single-molecule studies of freely diffusing biomolecules. Annu Rev Phys Chem 52:233–253

    Article  PubMed  CAS  Google Scholar 

  14. Eggeling C, Berger S, Brand L et al (2001) Data registration and selective single-molecule analysis using multi-parameter fluorescence detection. J Biotechnol 86:163–180

    Article  PubMed  CAS  Google Scholar 

  15. Schuler B, Lipman EA, Steinbach PJ et al (2005) Polyproline and the “spectroscopic ruler” revisited with single molecule fluorescence. Proc Natl Acad Sci U S A 102:2754–2759

    Article  PubMed  CAS  Google Scholar 

  16. Böhmer M, Enderlein J (2003) Fluorescence spectroscopy of single molecules under ambient conditions: methodology and technology. ChemPhysChem 4:793–808

    Article  PubMed  Google Scholar 

  17. Michalet X, Kapanidis AN, Laurence T et al (2003) The power and prospects of fluorescence microscopies and spectroscopies. Annu Rev Biophys Biomol Struct 32:161–182

    Article  PubMed  CAS  Google Scholar 

  18. Wahl M, Koberling F, Patting M et al (2004) Time-resolved confocal fluorescence imaging and spectrocopy system with single molecule sensitivity and sub-micrometer resolution. Curr Pharm Biotechnol 5:299–308

    Article  PubMed  CAS  Google Scholar 

  19. Hoffmann A, Kane A, Nettels D et al (2007) Mapping protein collapse with single-molecule fluorescence and kinetic synchrotron radiation circular dichroism spectroscopy. Proc Natl Acad Sci U S A 104:105–110

    Article  PubMed  CAS  Google Scholar 

  20. Nettels D, Gopich IV, Hoffmann A et al (2007) Ultrafast dynamics of protein collapse from single-molecule photon statistics. Proc Natl Acad Sci U S A 104:2655–2660

    Article  PubMed  CAS  Google Scholar 

  21. Felekyan S, Kuhnemuth R, Kudryavtsev V et al (2005) Full correlation from picoseconds to seconds by time-resolved and time-correlated single photon detection. Rev Sci Instrum 76:083104

    Article  Google Scholar 

  22. Wahl M, Rahn H-J, Röhlicke T et al (2008) Scalable time-correlated photon counting system with multiple independent input channels. Rev Sci Instrum 79:123113

    Article  PubMed  Google Scholar 

  23. Wahl M, Rahn HJ, Gregor I et al (2007) Dead-time optimized time-correlated photon counting instrument with synchronized, independent timing channels. Rev Sci Instrum 78:033106

    Article  PubMed  Google Scholar 

  24. Sisamakis E, Valeri A, Kalinin S et al (2010) Accurate single-molecule FRET studies using multiparameter fluorescence detection. Methods Enzymol 475:455–514

    Article  PubMed  CAS  Google Scholar 

  25. Nettels D, Hoffmann A, Schuler B (2008) Unfolded protein and peptide dynamics investigated with single-molecule FRET and correlation spectroscopy from picoseconds to seconds. J Phys Chem B 112:6137–6146

    Article  PubMed  CAS  Google Scholar 

  26. Gopich IV, Nettels D, Schuler B et al (2009) Protein dynamics from single-molecule fluorescence intensity correlation functions. J Chem Phys 131:095102

    Article  PubMed  Google Scholar 

  27. Mukhopadhyay S, Krishnan R, Lemke EA et al (2007) A natively unfolded yeast prion monomer adopts an ensemble of collapsed and rapidly fluctuating structures. Proc Natl Acad Sci U S A 104:2649–2654

    Article  PubMed  CAS  Google Scholar 

  28. Hoffmann A, Nettels D, Clark J et al (2011) Quantifying heterogeneity and conformational dynamics from single molecule FRET of diffusing molecules: recurrence analysis of single particles (RASP). Phys Chem Chem Phys 13:1857–1871

    Article  PubMed  CAS  Google Scholar 

  29. Dunsby C, Lanigan PMP, McGinty J et al (2004) An electronically tunable ultrafast laser source applied to fluorescence imaging and fluorescence lifetime imaging microscopy. J Phys D Appl Phys 37:3296–3303

    Article  CAS  Google Scholar 

  30. Nettels D, Müller-Späth S, Küster F et al (2009) Single molecule spectroscopy of the temperature-induced collapse of unfolded proteins. Proc Natl Acad Sci U S A 106:20740–20745

    Article  PubMed  CAS  Google Scholar 

  31. Murphy CJ (2002) Optical sensing with quantum dots. Anal Chem 74:520A–526A

    Article  PubMed  CAS  Google Scholar 

  32. Dawson PE, Kent SB (2000) Synthesis of native proteins by chemical ligation. Annu Rev Biochem 69:923–960

    Article  PubMed  CAS  Google Scholar 

  33. Ratner V, Kahana E, Eichler M et al (2002) A general strategy for site-specific double labeling of globular proteins for kinetic FRET studies. Bioconjug Chem 13:1163–1170

    Article  PubMed  CAS  Google Scholar 

  34. Kapanidis AN, Weiss S (2002) Fluorescent probes and bioconjugation chemistries for single-molecule fluorescence analysis of biomolecules. J Chem Phys 117:10953–10964

    Article  CAS  Google Scholar 

  35. David R, Richter MP, Beck-Sickinger AG (2004) Expressed protein ligation. Method and applications. Eur J Biochem 271:663–677

    Article  PubMed  CAS  Google Scholar 

  36. Schuler B, Pannell LK (2002) Specific labeling of polypeptides at amino-terminal cysteine residues using Cy5-benzyl thioester. Bioconjug Chem 13:1039–1043

    Article  PubMed  CAS  Google Scholar 

  37. Yamaguchi J, Nemoto N, Sasaki T et al (2001) Rapid functional analysis of protein-protein interactions by fluorescent C-terminal labeling and single-molecule imaging. FEBS Lett 502:79–83

    Article  PubMed  CAS  Google Scholar 

  38. Cropp TA, Schultz PG (2004) An expanding genetic code. Trends Genet 20:625–630

    Article  PubMed  CAS  Google Scholar 

  39. Zhou HX (2002) Dimensions of denatured protein chains from hydrodynamic data. J Phys Chem B 106:5769–5775

    Article  CAS  Google Scholar 

  40. Müller-Späth S, Soranno A, Hirschfeld V et al (2010) Charge interactions can dominate the dimensions of intrinsically disordered proteins. Proc Natl Acad Sci U S A 107:14609–14614

    Article  PubMed  Google Scholar 

  41. Doose S, Neuweiler H, Sauer M (2005) A close look at fluorescence quenching of organic dyes by tryptophan. Chemphyschem 6:2277–2285

    Article  PubMed  CAS  Google Scholar 

  42. Hillisch A, Lorenz M, Diekmann S (2001) Recent advances in FRET: distance determination in protein–DNA complexes. Curr Opin Struct Biol 11:201–207

    Article  PubMed  CAS  Google Scholar 

  43. Zondervan R, Kulzer F, Orlinskii SB et al (2003) Photoblinking of rhodamine 6G in poly(vinyl alcohol): Radical dark state formed through the triplet. J Phys Chem A 107:6770–6776

    Article  CAS  Google Scholar 

  44. Vogelsang J, Kasper R, Steinhauer C et al (2008) A reducing and oxidizing system minimizes photobleaching and blinking of fluorescent dyes. Angew Chem Int Ed Engl 47:5465–5469

    Article  PubMed  CAS  Google Scholar 

  45. Widengren J, Schwille P (2000) Characterization of photoinduced isomerization and back-isomerization of the cyanine dye Cy5 by fluorescence correlation spectroscopy. J Phys Chem A 104:6416–6428

    Article  CAS  Google Scholar 

  46. Chung HS, Louis JM, Eaton WA (2009) Experimental determination of upper bound for transition path times in protein folding from single-molecule photon-by-photon trajectories. Proc Natl Acad Sci U S A 106:11837–11844

    Article  PubMed  CAS  Google Scholar 

  47. Englander SW, Calhoun DB, Englander JJ (1987) Biochemistry without oxygen. Anal Biochem 161:300–306

    Article  PubMed  CAS  Google Scholar 

  48. Rasnik I, McKinney SA, Ha T (2006) Nonblinking and long-lasting single-molecule fluorescence imaging. Nat Methods 3:891–893

    Article  PubMed  CAS  Google Scholar 

  49. Vogelsang J, Cordes T, Forthmann C et al (2009) Controlling the fluorescence of ordinary oxazine dyes for single-molecule switching and superresolution microscopy. Proc Natl Acad Sci U S A 106:8107–8112

    Article  PubMed  CAS  Google Scholar 

  50. Laurence TA, Kong XX, Jager M et al (2005) Probing structural heterogeneities and fluctuations of nucleic acids and denatured proteins. Proc Natl Acad Sci U S A 102:17348–17353

    Article  PubMed  CAS  Google Scholar 

  51. Hillger F, Nettels D, Dorsch S et al (2007) Detection and analysis of protein aggregation with confocal single molecule fluorescence spectroscopy. J Fluoresc 17:759–765

    Article  PubMed  CAS  Google Scholar 

  52. Laurence TA, Kwon Y, Yin E et al (2007) Correlation spectroscopy of minor fluorescent species: signal purification and distribution analysis. Biophys J 92:2184–2198

    Article  PubMed  CAS  Google Scholar 

  53. Tjernberg LO, Pramanik A, Bjorling S et al (1999) Amyloid beta-peptide polymerization studied using fluorescence correlation spectroscopy. Chem Biol 6:53–62

    Article  PubMed  CAS  Google Scholar 

  54. Kapanidis AN, Lee NK, Laurence TA et al (2004) Fluorescence-aided molecule sorting: Analysis of structure and interactions by alternating-laser excitation of single molecules. Proc Natl Acad Sci U S A 101:8936–8941

    Article  PubMed  CAS  Google Scholar 

  55. Müller BK, Zaychikov E, Bräuchle C et al (2005) Pulsed interleaved excitation. Biophys J 89:3508–3522

    Article  PubMed  Google Scholar 

  56. Amirgoulova EV, Groll J, Heyes CD et al (2004) Biofunctionalized polymer surfaces exhibiting minimal interaction towards immobilized proteins. ChemPhysChem 5:552–555

    Article  PubMed  CAS  Google Scholar 

  57. Groll J, Amirgoulova EV, Ameringer T et al (2004) Biofunctionalized, ultrathin coatings of cross-linked star-shaped poly(ethylene oxide) allow reversible folding of immobilized proteins. J Am Chem Soc 126:4234–4239

    Article  PubMed  CAS  Google Scholar 

  58. Boukobza E, Sonnenfeld A, Haran G (2001) Immobilization in surface-tethered lipid vesicles as a new tool for single biomolecule spectroscopy. J Phys Chem B 105:12165–12170

    Article  CAS  Google Scholar 

  59. Sakmann B, Neher E (1995) Single channel recording. Plenum, New York, NY

    Book  Google Scholar 

  60. Talaga DS (2007) Markov processes in single molecule fluorescence. Curr Opin Colloid Interface Sci 12:285–296

    Article  PubMed  CAS  Google Scholar 

  61. Watkins LP, Yang H (2005) Detection of intensity change points in time-resolved single-molecule measurements. J Phys Chem B 109:617–628

    Article  PubMed  CAS  Google Scholar 

  62. Brown FLH (2006) Generating function methods in single-molecule spectroscopy. Accounts Chem Res 39:363–373

    Article  CAS  Google Scholar 

  63. Gopich IV, Szabo A (2003) Statistics of transitions in single molecule kinetics. J Chem Phys 118:454–455

    Article  CAS  Google Scholar 

  64. Baba A, Komatsuzaki T (2007) Construction of effective free energy landscape from single-molecule time series. Proc Natl Acad Sci U S A 104:19297–19302

    Article  PubMed  CAS  Google Scholar 

  65. Gopich IV, Szabo A (2003) Single-macromolecule fluorescence resonance energy transfer and free-energy profiles. J Phys Chem B 107:5058–5063

    Article  CAS  Google Scholar 

  66. Gopich IV, Szabo A (2005) Theory of photon statistics in single-molecule Förster resonance energy transfer. J Chem Phys 122:1–18

    Article  Google Scholar 

  67. Gopich IV, Szabo A (2009) In: Barkai E, Brown FLH, Orrit M, Yang H (eds) Theory and evaluation of single-molecule signals. World Scientific Pub. Co., Singapore, pp 1–64

    Google Scholar 

  68. Gopich IV, Szabo A (2007) Single-molecule FRET with diffusion and conformational dynamics. J Phys Chem B 111:12925–12932

    Article  PubMed  CAS  Google Scholar 

  69. Nir E, Michalet X, Hamadani KM et al (2006) Shot-noise limited single-molecule FRET histograms: comparison between theory and experiments. J Phys Chem B 110:22103–22124

    Article  PubMed  CAS  Google Scholar 

  70. Antonik M, Felekyan S, Gaiduk A et al (2006) Separating structural heterogeneities from stochastic variations in fluorescence resonance energy transfer distributions via photon distribution analysis. J Phys Chem B 110:6970–6978

    Article  PubMed  CAS  Google Scholar 

  71. Kalinin S, Felekyan S, Antonik M et al (2007) Probability distribution analysis of single-molecule fluorescence anisotropy and resonance energy transfer. J Phys Chem 111:10253–10262

    Article  CAS  Google Scholar 

  72. Kalinin S, Felekyan S, Valeri A et al (2008) Characterizing multiple molecular states in single-molecule multiparameter fluorescence detection by probability distribution analysis. J Phys Chem 112:8361–8374

    Article  CAS  Google Scholar 

  73. Best R, Merchant K, Gopich IV et al (2007) Effect of flexibility and cis residues in single molecule FRET studies of polyproline. Proc Natl Acad Sci U S A 104:18964–18969

    Article  PubMed  CAS  Google Scholar 

  74. Gopich IV, Szabo A (2009) Decoding the pattern of photon colors in single-molecule FRET. J Phys Chem B 113:10965–10973

    Article  PubMed  CAS  Google Scholar 

  75. Hofmann H, Hillger F, Pfeil SH et al (2010) Single-molecule spectroscopy of protein folding in a chaperonin cage. Proc Natl Acad Sci U S A 107:11793–11798

    Article  PubMed  CAS  Google Scholar 

  76. Gopich I, Szabo A (2005) Fluorophore-quencher distance correlation functions from single-molecule photon arrival trajectories. J Phys Chem B 109:6845–6848

    Article  PubMed  CAS  Google Scholar 

  77. Fleury L, Segura JM, Zumofen G et al (2000) Nonclassical photon statistics in single-molecule fluorescence at room temperature. Phys Rev Lett 84:1148–1151

    Article  PubMed  CAS  Google Scholar 

  78. Hillger F, Hänni D, Nettels D et al (2008) Probing protein–chaperone interactions with single molecule fluorescence spectroscopy. Angew Chem Int Ed 47:6184–6188

    Article  CAS  Google Scholar 

  79. Gopich IV, Szabo A (2007) Single-molecule FRET with diffusion and conformational dynamics. J Phys Chem B 111:12925–12932

    Article  PubMed  CAS  Google Scholar 

  80. Chung HS, Gopich IV, McHale K et al (2011) Extracting rate coefficients from single-molecule photon trajectories and FRET efficiency histograms for a fast-folding protein. J Phys Chem A 115(16):3642–3656

    Article  PubMed  CAS  Google Scholar 

  81. Merchant KA, Best RB, Louis JM et al (2007) Characterizing the unfolded states of proteins using single-molecule FRET spectroscopy and molecular simulations. Proc Natl Acad Sci U S A 104:1528–1533

    Article  PubMed  CAS  Google Scholar 

  82. Rigler R, Elson ES (2001) Flourescence correlation spectroscopy: theory and applications. Springer, Berlin

    Book  Google Scholar 

  83. Lipman EA, Schuler B, Bakajin O et al (2003) Single-molecule measurement of protein folding kinetics. Science 301:1233–1235

    Article  PubMed  CAS  Google Scholar 

  84. Hamadani KM, Weiss S (2008) Nonequilibrium single molecule protein folding in a coaxial mixer. Biophys J 95:352–365

    Article  PubMed  CAS  Google Scholar 

  85. Pfeil SH, Wickersham CE, Hoffmann A et al (2009) A microfluidic mixing system for single-molecule measurements. Rev Sci Instrum 80:055105

    Article  PubMed  Google Scholar 

  86. Gambin Y, Vandelinder V, Ferreon AC et al (2011) Visualizing a one-way protein encounter complex by ultrafast single-molecule mixing. Nat Methods 8:239–241

    Article  PubMed  CAS  Google Scholar 

  87. Gambin Y, Deniz AA (2010) Multicolor single-molecule FRET to explore protein folding and binding. Mol Biosyst 6:1540–1547

    Article  PubMed  CAS  Google Scholar 

  88. Kapanidis AN, Laurence TA, Lee NK et al (2005) Alternating-laser excitation of single molecules. Acc Chem Res 38:523–533

    Article  PubMed  CAS  Google Scholar 

  89. Muller BK, Zaychikov E, Brauchle C et al (2005) Pulsed interleaved excitation. Biophys J 89:3508–3522

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work has been supported by the Swiss National Science Foundation, the Swiss National Center of Competence in Research for Structural Biology, and a Starting Researcher Grant by the European Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Schuler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this protocol

Cite this protocol

Schuler, B., Müller-Späth, S., Soranno, A., Nettels, D. (2012). Application of Confocal Single-Molecule FRET to Intrinsically Disordered Proteins. In: Uversky, V., Dunker, A. (eds) Intrinsically Disordered Protein Analysis. Methods in Molecular Biology, vol 896. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3704-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-3704-8_2

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-3703-1

  • Online ISBN: 978-1-4614-3704-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics