Skip to main content

Estimation of Intrinsically Disordered Protein Shape and Time-Averaged Apparent Hydration in Native Conditions by a Combination of Hydrodynamic Methods

  • Protocol
  • First Online:
Intrinsically Disordered Protein Analysis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 896))

Abstract

Size exclusion chromatography coupled online to a Tetra Detector Array in combination with analytical ultracentrifugation (or with quasi-elastic light scattering) is a useful methodology to characterize hydrodynamic properties of macromolecules, including intrinsically disordered proteins. The time-averaged apparent hydration and the shape factor of proteins can be estimated from the measured parameters (molecular mass, intrinsic viscosity, hydrodynamic radius) by these techniques. Here we describe in detail this methodology and its application to characterize hydrodynamic and conformational changes in proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

M :

Molecular mass, g/mol

T :

Absolute temperature, K

C :

Protein concentration, mol/L (M)

\( {\hbox{d}}n/{\hbox{d}}c \) :

Refractive index increment, mL/g

\( {\hbox{d}}A/{\hbox{d}}c \) :

Absorbance increment, L/g cm

\( \left[ \eta \right] \) :

Intrinsic viscosity, mL/g

\( \nu \) :

Hydrodynamic shape function, viscosity increment, Simha–Saito shape factor, unitless

\( \delta \) :

Time-averaged apparent hydration, \( {{\hbox{g}}_{{{{\rm{H}}_{{2}}}{\rm{O}}}}}/{\hbox{g}}_{\rm{protein}} \)

\( {{f} \left/ {{{f_0}}} \right.} \) :

Translational frictional ratio of the protein, including shape and hydration parameters

\( f \) :

Frictional coefficient of the protein, g/s

\( {f_0} \) :

Frictional coefficient of an anhydrous sphere of the mass of the protein, g/s

R H :

Hydrodynamic radius of the protein, cm

R 0 :

Radius of an anhydrous sphere of the mass of the protein, cm

V H :

Hydrodynamic volume calculated from the R H, cm3

D t :

Translational diffusion coefficient, cm2/s

s :

Sedimentation coefficient obtained at the temperature of the experiment, Svedberg, 10−13s

\( \eta \) :

Viscosity of the solvent, Poise: g/cm s

\( \rho \) :

Density of the solvent, g/mL

k B :

Boltzmann’s constant, erg/K (K B: 1.38065 × 10−16 erg/K, with erg: g cm2/s2 = 10−7 J 1.38065 × 10−23 J/K)

N A :

Avogadro’s number, molecules/mol

\( \bar{\nu } \) :

Partial specific volume, mL/g

\( a/b \) :

Axial ratio of ellipsoid

RALS :

Right Angle Light-Scattering

LALS :

Low Angle Light-Scattering

IP :

Internal Pressure

DP :

Differential Pressure

UV :

Ultraviolet absorption

RI:

Refractive Index

References

  1. Chenal A, Guijarro JI, Raynal B, Delepierre M, Ladant D (2009) RTX calcium binding motifs are intrinsically disordered in the absence of calcium: implication for protein secretion. J Biol Chem 284:1781–1789

    Article  PubMed  CAS  Google Scholar 

  2. Sotomayor Perez AC, Karst JC, Davi M, Guijarro JI, Ladant D, Chenal A (2010) Characterization of the regions involved in the calcium-induced folding of the intrinsically disordered RTX motifs from the bordetella pertussis adenylate cyclase toxin. J Mol Biol 397:534–549

    Article  PubMed  Google Scholar 

  3. Sotomayor-Pérez AC, Ladant D, Chenal A (2011) Calcium-induced folding of intrinsically disordered repeat-in-toxin (RTX) motifs via changes of protein charges and oligomerization states. J Biol Chem 286:16997–17004.

    Article  PubMed  Google Scholar 

  4. Chenal A, Vendrely C, Vitrac H, Karst JC, Gonneaud A, Blanchet CE, Pichard S, Garcia E, Salin B, Catty P, Gillet D, Hussy N, Marquette C, Almunia C, Forge V (2011) Amyloid fibrils formed by the programmed cell death regulator Bcl-xL. J Mol Biol 415:584–599.

    Article  PubMed  Google Scholar 

  5. Chenal A, Vendrely C, Vitrac H, Karst JC, Gonneaud A, Blanchet CE, Pichard S, Garcia E, Salin B, Catty P, Gilltet D, Hussy N, Marquette C, Almunia C, Gorge V (2011) Amyloid fibrils formed by the programmed cell death regulator Bcl-xL. J Mol Biol 415:584–599

    Google Scholar 

  6. Bourdeau RW, Malito E, Chenal A, Bishop BL, Musch MW, Villereal ML, Chang EB, Mosser EM, Rest RF, Tang WJ (2009) Cellular functions and X-ray structure of anthrolysin O, a cholesterol-dependent cytolysin secreted by Bacillus anthracis. J Biol Chem 284:14645–14656

    Article  PubMed  CAS  Google Scholar 

  7. Simha R (1940) The influence of Brownian movement on the viscosity of solutions. J Phys Chem 44:25–34

    Article  CAS  Google Scholar 

  8. Harding SE (1997) The intrinsic viscosity of biological macromolecules. Progress in measurement, interpretation and application to structure in dilute solution. Prog Biophys Mol Biol 68:207–262

    Article  PubMed  CAS  Google Scholar 

  9. Harding SE, Colfen H (1995) Inversion formulae for ellipsoid of revolution macromolecular shape functions. Anal Biochem 228:131–142

    Article  PubMed  CAS  Google Scholar 

  10. Harding SE, Horton JC, Colfen H (1997) The ELLIPS suite of macromolecular conformation algorithms. Eur Biophys J 25:347–359

    Article  PubMed  CAS  Google Scholar 

  11. Perrin F (1936) Mouvement brownien d’un ellipsoïde (II). Rotation libre et dépolarisation des fluorescences. Translation et diffusion de molécules ellipsoïdales. J Phys Rad 7:1–11

    Article  CAS  Google Scholar 

  12. Squire PG, Himmel ME (1979) Hydrodynamics and protein hydration. Arch Biochem Biophys 196:165–177

    Article  PubMed  CAS  Google Scholar 

  13. Chenal A, Karst JC, Perez AC, Wozniak AK, Baron B, England P, Ladant D (2010) Calcium-induced folding and stabilization of the intrinsically disordered RTX domain of the CyaA toxin. Biophys J 99:3744–3753

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Institut Pasteur (Grant PTR374), the Centre National de la Recherche Scientifique (CNRS UMR 3528), and the Agence Nationale de la Recherche, programme Jeunes Chercheurs (ANR, grant ANR-09-JCJC-0012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre Chenal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this protocol

Cite this protocol

Karst, J.C., Sotomayor-Pérez, A.C., Ladant, D., Chenal, A. (2012). Estimation of Intrinsically Disordered Protein Shape and Time-Averaged Apparent Hydration in Native Conditions by a Combination of Hydrodynamic Methods. In: Uversky, V., Dunker, A. (eds) Intrinsically Disordered Protein Analysis. Methods in Molecular Biology, vol 896. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3704-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-3704-8_10

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-3703-1

  • Online ISBN: 978-1-4614-3704-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics