Skip to main content

Primary Isolation of Mycobacterium ulcerans

  • Protocol
  • First Online:
Mycobacterium ulcerans

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2387))

  • 496 Accesses

Abstract

Primary isolation of Mycobacterium ulcerans is the separation and growth of the bacterium from a mixed population either in clinical specimen or environmental specimen in pure cultures. It is a crucial activity as it can be used to monitor antimicrobial treatment, surveillance for antimicrobial resistance, and molecular epidemiology studies toward understanding pathogen ecology and transmission as well as pathogen biology. The process involves removal of unwanted fast-growing bacteria using 5% oxalic acid, inoculation on Lowenstein-Jensen medium supplemented with glycerol, and incubation at temperatures between 30 °C and 33 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Marshall B, Armstrong JA, McGechie DB, Glancy RJ (1985) Attempt to fulfill Koch’s postulates for pyloric Campylobacter. Med J Aust 142:436–439

    Article  CAS  Google Scholar 

  2. Sousa AM, Pereira MO (2013) A prospect of current microbial diagnosis methods. In: Mendez-Vilas A (ed) Microbial pathogens and strategies for combating them: science, technology and education, vol. 3. Formatex, Badajoz, pp 1429–1438, ISBN: 978-84-942134-1-0

    Google Scholar 

  3. Vartoukian SR, Palmer RM, Wade WG (2010) Strategies for culture of ‘unculturable’ bacteria. FEMS Microbiol Lett 309(1):1–7. https://doi.org/10.1111/j.1574-6968.2010.02000.x

    Article  CAS  PubMed  Google Scholar 

  4. Pierce-Hendry SA, Dennis J (2010) Bacterial culture and antibiotic susceptibility testing. Compend Contin Educ Vet 32(7):E1–E5; quiz E6

    PubMed  Google Scholar 

  5. Sharma R, Cooke RP, Ratcliffe JG (2008) Detection of ESBL bacteria from clinical specimens: evaluation of a new selective medium. Br J Biomed Sci 65(4):191–194

    Article  CAS  Google Scholar 

  6. Ahmed S, Kawaguchiya M, Ghosh S, Paul SK, Urushibara N, Mahmud C, Nahar K, Hossain MA, Kobayashi N (2015) Drug resistance and molecular epidemiology of aerobic bacteria isolated from puerperal infections in Bangladesh. Microb Drug Resist 21(3):297–306. https://doi.org/10.1089/mdr.2014.0219

    Article  CAS  PubMed  Google Scholar 

  7. Humphreys H, Coleman DC (2019) Contribution of whole-genome sequencing to understanding of the epidemiology and control of methicillin-resistant Staphylococcus aureus. J Hosp Infect 102(2):189–199. https://doi.org/10.1016/j.jhin.2019.01.025. Epub 2019 Feb 2. Review

    Article  CAS  PubMed  Google Scholar 

  8. Fournier PE, Drancourt M, Raoult D (2007) Bacterial genome sequencing and its use in infectious diseases. Lancet Infect Dis 7:711–723. https://doi.org/10.1016/S1473-3099(07)70260-8

    Article  CAS  PubMed  Google Scholar 

  9. Burrack LS, Higgins DE (2007) Genomic approaches to understanding bacterial virulence. Curr Opin Microbiol 10(1):4–9

    Article  CAS  Google Scholar 

  10. Keating LA, Wheeler PR, Mansoor H, Inwald JK, Dale J, Hewinson RG, Gordon SV (2005) The pyruvate requirement of some members of the Mycobacterium tuberculosis complex is due to an inactive pyruvate kinase: implications for in vivo growth. Mol Microbiol 56(1):163–174. https://doi.org/10.1111/j.1365-2958.2005.04524.x

    Article  CAS  PubMed  Google Scholar 

  11. Davis KE, Joseph SJ, Janssen PH (2005) Effects of growth medium, inoculum size, and incubation time on culturability and isolation of soil bacteria. Appl Environ Microbiol 71(2):826–834

    Article  CAS  Google Scholar 

  12. Vallejo Esquerra E, Yang H, Sanchez SE, Omsland A (2017) Physicochemical and nutritional requirements for axenic replication suggest physiological basis for Coxiella burnetii niche restriction. Front Cell Infect Microbiol 7:190. https://doi.org/10.3389/fcimb.2017.00190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Niederweis M (2008) Nutrient acquisition by mycobacteria. Microbiology 154(Pt 3):679–692. https://doi.org/10.1099/mic.0.2007/012872-0

    Article  CAS  PubMed  Google Scholar 

  14. Stieglmeier M, Wirth R, Kminek G, Moissl-Eichinger C (2009) Cultivation of anaerobic and facultatively anaerobic bacteria from spacecraft-associated clean rooms. Appl Environ Microbiol 75(11):3484–3491

    Article  CAS  Google Scholar 

  15. Mohammad BT, Al Daghistani HI, Jaouani A, Abdel-Latif S, Kennes C (2017) Isolation and characterization of thermophilic bacteria from jordanian hot springs: Bacillus licheniformis and Thermomonas hydrothermalis isolates as potential producers of thermostable enzymes. Int J Microbiol 2017:6943952. https://doi.org/10.1155/2017/6943952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Palomino JC, Obiang AM, Realini L, Meyers WM, Portaels F (1998) Effect of oxygen on growth of Mycobacterium ulcerans in the BACTEC system. J Clin Microbiol 36:3420–3422

    Article  CAS  Google Scholar 

  17. Aboagye SY, Danso E, Ampah KA, Nakobu Z, Asare P, Otchere ID, Röltgen K, Yirenya-Tawiah D, Yeboah-Manu D (2016) Isolation of nontuberculous Mycobacteria from the environment of Buruli ulcer endemic communities in Ghana. Appl Environ Microbiol 82(14):4320–4329. https://doi.org/10.1128/aem.01002-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Portaels F, Meyers WM, Ablordey A, Castro AG, Chemlal K, de Rijk P, Elsen P, Fissette K, Fraga AG, Lee R et al (2008) First cultivation and characterization of Mycobacterium ulcerans from the environment. PLoS Negl Trop Dis 2:e178

    Article  Google Scholar 

  19. Zingue D, Panda A, Drancourt M (2018) A protocol for culturing environmental strains of the Buruli ulcer agent, Mycobacterium ulcerans. Sci Rep 8:6778. https://doi.org/10.1038/s41598-018-25278

    Article  PubMed  PubMed Central  Google Scholar 

  20. Yeboah-Manu D, Bodmer T, Mensah-Quainoo E, Owusu S, Ofori-Adjei D, Pluschke G (2004) Evaluation of decontamination methods and growth media for primary isolation of Mycobacterium ulcerans from surgical specimens. J Clin Microbiol 42(12):5875–5876

    Article  Google Scholar 

  21. Buijtels PC, Petit PL (2005) Comparison of NaOH-N-acetyl cysteine and sulfuric acid decontamination methods for recovery of mycobacteria from clinical specimens. J Microbiol Methods 62:83–88

    Article  CAS  Google Scholar 

  22. Kubica G, Dye W, Cohn M, Middlebrook G (1963) Sputum digestion and decontamination with N-acetyl-L-cysteine-sodium hydroxide for culture of mycobacteria. Am Rev Respir Dis 87:775–779

    CAS  PubMed  Google Scholar 

  23. Portaels F, De Muynec A, Sylla MP (1988) Selective isolation of mycobacteria from soil: a statistical analysis approach. J Gen Microbiol 134:849–855

    CAS  PubMed  Google Scholar 

  24. Yeboah-Manu D, Danso E, Ampah K, Asante-Poku A, Nakobu Z, Pluschke G (2011) Isolation of Mycobacterium ulcerans from swab and fine-needle-aspiration specimens. J Clin Microbiol 49(5):1997–1999. https://doi.org/10.1128/JCM.02279-10

    Article  PubMed  PubMed Central  Google Scholar 

  25. Lavender CJ, Fyfe JAM (2013) Direct detection of Mycobacterium ulcerans in clinical specimens and environmental samples. Methods Mol Biol 943:201–216

    Article  CAS  Google Scholar 

  26. Käser M, Ruf MT, Hauser J, Marsollier L, Pluschke G (2009) Optimized method for preparation of DNA from pathogenic and environmental mycobacteria. Appl Environ Microbiol 75:414–418. https://doi.org/10.1128/AEM.01358-08

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dorothy Yeboah-Manu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Yeboah-Manu, D., Asante-Poku, A., Yaw Aboagye, S. (2022). Primary Isolation of Mycobacterium ulcerans. In: Pluschke, G., Röltgen, K. (eds) Mycobacterium ulcerans. Methods in Molecular Biology, vol 2387. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1779-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1779-3_3

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1778-6

  • Online ISBN: 978-1-0716-1779-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics