Skip to main content

Live Imaging of Autophagosome Biogenesis and Maturation in Primary Neurons

  • Protocol
  • First Online:
Imaging and Quantifying Neuronal Autophagy

Part of the book series: Neuromethods ((NM,volume 171))

  • 899 Accesses

Abstract

Live-cell imaging of autophagy in primary neurons has revealed a robust and constitutive pathway for nonselective autophagy in the axon. Autophagosome biogenesis occurs in the distal axon; newly formed autophagosomes engulf cargos including mitochondrial fragments, protein aggregates, and bulk cytoplasm. Once formed, autophagosomes move rapidly and processively along the axon toward the soma, fusing with lysosomes in transit to mature into degradation-competent autolysosomes. Each step of the biogenesis and maturation pathway can be visualized with live imaging of primary neurons in culture; importantly, live imaging in vivo in C. elegans and Drosophila has confirmed observations made in primary neurons. Here, we detail considerations relating to choice of model system, probe, and microscope, and provide advice on methods and specific points to consider.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hara T, Nakamura K, Matsui M, Yamamoto A, Nakahara Y, Suzuki-Migishima R, Yokoyama M, Mishima K, Saito I, Okano H et al (2006) Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 441:885–889

    Article  CAS  PubMed  Google Scholar 

  2. Komatsu M, Wang QJ, Holstein GR, Friedrich VL Jr, Iwata J, Kominami E, Chait BT, Tanaka K, Yue Z (2007) Essential role for autophagy protein Atg7 in the maintenance of axonal homeostasis and the prevention of axonal degeneration. Proc Natl Acad Sci U S A 104:14489–14494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wu Y, Whiteus C, Xu CS, Hayworth KJ, Weinberg RJ, Hess HF, De Camilli P (2017) Contacts between the endoplasmic reticulum and other membranes in neurons. Proc Natl Acad Sci U S A 114:E4859–E4867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Maday S, Holzbaur EL (2014) Autophagosome biogenesis in primary neurons follows an ordered and spatially regulated pathway. Dev Cell 30:71–85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gowrishankar S, Yuan P, Wu Y, Schrag M, Paradise S, Grutzendler J, De Camilli P, Ferguson SM (2015) Massive accumulation of luminal protease-deficient axonal lysosomes at Alzheimer’s disease amyloid plaques. Proc Natl Acad Sci U S A 112:E3699–E3708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Nirschl JJ, Ghiretti AE, Holzbaur ELF (2017) The impact of cytoskeletal organization on the local regulation of neuronal transport. Nat Rev Neurosci 18:585–597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Huang CY, Rasband MN (2018) Axon initial segments: structure, function, and disease. Ann N Y Acad Sci 1420:46–61

    Article  PubMed  PubMed Central  Google Scholar 

  8. Leterrier C (2018) The axon initial segment: an updated viewpoint. J Neurosci 38:2135–2145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Boecker CA, Holzbaur EL (2019) Vesicular degradation pathways in neurons: at the crossroads of autophagy and endo-lysosomal degradation. Curr Opin Neurobiol 57:94–101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mizushima N, Yamamoto A, Matsui M, Yoshimori T, Ohsumi Y (2004) In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. Mol Biol Cell 15:1101–1111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hollenbeck PJ (1993) Products of endocytosis and autophagy are retrieved from axons by regulated retrograde organelle transport. J Cell Biol 121:305–315

    Article  CAS  PubMed  Google Scholar 

  12. Lee S, Sato Y, Nixon RA (2011) Lysosomal proteolysis inhibition selectively disrupts axonal transport of degradative organelles and causes an Alzheimer’s-like axonal dystrophy. J Neurosci 31:7817–7830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Maday S, Wallace KE, Holzbaur EL (2012) Autophagosomes initiate distally and mature during transport toward the cell soma in primary neurons. J Cell Biol 196:407–417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cheng XT, Zhou B, Lin MY, Cai Q, Sheng ZH (2015) Axonal autophagosomes recruit dynein for retrograde transport through fusion with late endosomes. J Cell Biol 209:377–386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wong YC, Holzbaur EL (2014) The regulation of autophagosome dynamics by huntingtin and HAP1 is disrupted by expression of mutant huntingtin, leading to defective cargo degradation. J Neurosci 34:1293–1305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Fu M-M, Nirschl JJ, Holzbaur ELF (2014) LC3 binding to the scaffolding protein JIP1 regulates processive dynein-driven transport of autophagosomes. Dev Cell 29:577–590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Stavoe AK, Hill SE, Hall DH, Colon-Ramos DA (2016) KIF1A/UNC-104 transports ATG-9 to regulate neurodevelopment and autophagy at synapses. Dev Cell 38:171–185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Neisch AL, Neufeld TP, Hays TS (2017) A STRIPAK complex mediates axonal transport of autophagosomes and dense core vesicles through PP2A regulation. J Cell Biol 216:441–461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jin EJ, Kiral FR, Ozel MN, Burchardt LS, Osterland M, Epstein D, Wolfenberg H, Prohaska S, Hiesinger PR (2018) Live observation of two parallel membrane degradation pathways at axon terminals. Curr Biol 28:1027–1038.e1024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Koyama-Honda I, Itakura E, Fujiwara TK, Mizushima N (2013) Temporal analysis of recruitment of mammalian ATG proteins to the autophagosome formation site. Autophagy 9:1491–1499

    Article  CAS  PubMed  Google Scholar 

  21. Itakura E, Mizushima N (2010) Characterization of autophagosome formation site by a hierarchical analysis of mammalian Atg proteins. Autophagy 6:764–776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Maday S, Holzbaur EL (2016) Compartment-specific regulation of autophagy in primary neurons. J Neurosci 36:5933–5945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tang G, Gudsnuk K, Kuo SH, Cotrina ML, Rosoklija G, Sosunov A, Sonders MS, Kanter E, Castagna C, Yamamoto A et al (2014) Loss of mTOR-dependent macroautophagy causes autistic-like synaptic pruning deficits. Neuron 83:1131–1143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Devireddy S, Liu A, Lampe T, Hollenbeck PJ (2015) The organization of mitochondrial quality control and life cycle in the nervous system in vivo in the absence of PINK1. J Neurosci 35:9391–9401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sung H, Tandarich LC, Nguyen K, Hollenbeck PJ (2016) Compartmentalized regulation of Parkin-mediated mitochondrial quality control in the Drosophila nervous system in vivo. J Neurosci 36:7375–7391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ashrafi G, Schlehe JS, LaVoie MJ, Schwarz TL (2014) Mitophagy of damaged mitochondria occurs locally in distal neuronal axons and requires PINK1 and Parkin. J Cell Biol 206:655–670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Evans CS, Holzbaur ELF (2019) Autophagy and mitophagy in ALS. Neurobiol Dis 122:35–40

    Article  CAS  PubMed  Google Scholar 

  28. Fernandopulle MS, Prestil R, Grunseich C, Wang C, Gan L, Ward ME (2018) Transcription factor-mediated differentiation of human iPSCs into neurons. Curr Protoc Cell Biol 79:e51

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Hsieh CH, Shaltouki A, Gonzalez AE, Bettencourt da Cruz A, Burbulla LF, St Lawrence E, Schule B, Krainc D, Palmer TD, Wang X (2016) Functional impairment in Miro degradation and mitophagy is a shared feature in familial and sporadic Parkinson’s disease. Cell Stem Cell 19:709–724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hill SE, Kauffman KJ, Krout M, Richmond JE, Melia TJ, Colon-Ramos DA (2019) Maturation and clearance of autophagosomes in neurons depends on a specific cysteine protease isoform, ATG-4.2. Dev Cell 49(2):251–266.e8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kaech S, Banker G (2006) Culturing hippocampal neurons. Nat Protoc 1:2406–2415

    Article  CAS  PubMed  Google Scholar 

  32. Stavoe AK, Holzbaur EL (2018) Expression of WIPI2B counteracts age-related decline in autophagosome biogenesis in neurons. Elife 8:e44219

    Article  Google Scholar 

  33. Pacifici M, Peruzzi F (2012) Isolation and culture of rat embryonic neural cells: a quick protocol. J Vis Exp 63:e3965

    Google Scholar 

  34. Perlson E, Jeong G-B, Ross JL, Dixit R, Wallace KE, Kalb RG, Holzbaur ELF (2009). A switch in retrograde signaling from survival to stress in rapid-onset neurodegeneration. J Neurosci 29(31):9903–9917. PMCID: PMC3095444

    Google Scholar 

  35. Jiang M, Chen G (2006) High Ca2+−phosphate transfection efficiency in low-density neuronal cultures. Nat Protoc 1:695–700

    Article  CAS  PubMed  Google Scholar 

  36. Pankiv S, Clausen TH, Lamark T, Brech A, Bruun JA, Outzen H, Overvatn A, Bjorkoy G, Johansen T (2007) p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem 282:24131–24145

    Article  CAS  PubMed  Google Scholar 

  37. Li J, Chen Z, Stang MT, Gao W (2017) Transiently expressed ATG16L1 inhibits autophagosome biogenesis and aberrantly targets RAB11-positive recycling endosomes. Autophagy 13:345–358

    Article  CAS  PubMed  Google Scholar 

  38. Katayama H, Kogure T, Mizushima N, Yoshimori T, Miyawaki A (2011) A sensitive and quantitative technique for detecting autophagic events based on lysosomal delivery. Chem Biol 18:1042–1052

    Article  CAS  PubMed  Google Scholar 

  39. McWilliams TG, Prescott AR, Allen GF, Tamjar J, Munson MJ, Thomson C, Muqit MM, Ganley IG (2016) mito-QC illuminates mitophagy and mitochondrial architecture in vivo. J Cell Biol 214:333–345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Rossner M, Yamada KM (2004) What’s in a picture? The temptation of image manipulation. J Cell Biol 166:11–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. North AJ (2006) Seeing is believing? A beginners’ guide to practical pitfalls in image acquisition. J Cell Biol 172(1):9–18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682

    Article  CAS  PubMed  Google Scholar 

  43. Moughamian AJ, Osborn GE, Lazarus JE, Maday S, Holzbaur EL (2013) Ordered recruitment of dynactin to the microtubule plus-end is required for efficient initiation of retrograde axonal transport. J Neurosci 33:13190–13203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Grubb MS, Burrone J (2010) Activity-dependent relocation of the axon initial segment fine-tunes neuronal excitability. Nature 465:1070–1074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Aiken J, Moore JK, Bates EA (2018) TUBA1A mutations identified in lissencephaly patients dominantly disrupt neuronal migration and impair dynein activity. Hum Mol Genet 28(8):1227–1243

    Article  PubMed Central  CAS  Google Scholar 

  46. Olenick MA, Dominguez R, Holzbaur ELF (2019) Dynein activator Hook1 is required for trafficking of BDNF-signaling endosomes in neurons. J Cell Biol 218:220–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Guedes-Dias P, Nirschl JJ, Abreu N, Tokito MK, Janke C, Magiera MM, Holzbaur ELF (2019) Kinesin-3 responds to local microtubule dynamics to target synaptic cargo delivery to the presynapse. Curr Biol 29:268–282.e268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Bindels DS, Haarbosch L, van Weeren L, Postma M, Wiese KE, Mastop M, Aumonier S, Gotthard G, Royant A, Hink MA et al (2017) mScarlet: a bright monomeric red fluorescent protein for cellular imaging. Nat Methods 14:53–56

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erika L. F. Holzbaur .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Stavoe, A.K.H., Holzbaur, E.L.F. (2022). Live Imaging of Autophagosome Biogenesis and Maturation in Primary Neurons. In: Loos, B., Wong, E. (eds) Imaging and Quantifying Neuronal Autophagy. Neuromethods, vol 171. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1589-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1589-8_3

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1588-1

  • Online ISBN: 978-1-0716-1589-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics