Laboratory Techniques for Entomopathogenic Nematodes

Part of the Springer Protocols Handbooks book series (SPH)


Entomopathogenic nematodes are beneficial biocontrol agents of insect pests. Before application, they need to be identified and characterized. Insect hosts like G. mellonella, T. molitor and S. litura are reared in laboratory conditions for various EPN studies. Isolation techniques of soil nematodes depend on nematode type. EPNs from infected cadavers are collected using White Trap Method, their pathogenicity is verified by Koch’s postulates, and are quantified using nematode counting devices. Nematodes are examined either live or heat killed for morphological studies. Nuclear rDNA has been a beneficial tool for providing markers associated in delimitation of EPN at diverse taxonomic levels. Environmental tolerance is studied for tolerance to heat, cold, pH, moisture, desiccation, and hypoxia, respectively. EPNs are mass produced either in vivo or in vitro for laboratory experiments or commercial development. The virulence and bioefficacy of EPNs is evaluated.


Insect rearing Sampling Storage ITS region Phylogeny RAPD RFLP Ecological characterization Mass production 


  1. 62.
    Nguyen KB, Smart GC Jr (1994) Neosteinernema longicurvicauda n. gen., n. sp. (Rhabdifida: Steinernematidae), a parasite of the termite Reticulitermes flavipes (Koller). J Nematol 26:162–174PubMedPubMedCentralGoogle Scholar
  2. 158.
    Southey JF (1986) Laboratory methods for work with plant and soil nematodes. HMSO, LondonGoogle Scholar
  3. 159.
    Jenkins WRB (1964) A rapid centrifugal-flotation technique for separating nematodes from soil. Pl Dis Rep 48(9)Google Scholar
  4. 160.
    Bedding RA, Akhurst RJ (1975) A simple technique for the detection of insect paristic rhabditid nematodes in soil. Nematologica 21(1):109–110CrossRefGoogle Scholar
  5. 161.
    Fan X, Hominick WM (1991) Efficiency of the Galleria (wax month) baiting technique for recovering infective stages of entomopathogenic rhabditids (Steinernematidae and heterorhabditidae) from sand and soil. Rev Nematol 14(3):381–387Google Scholar
  6. 162.
    White GF (1927) A method for obtaining infective nematode larvae from cultures. Science 66(1709):302–303CrossRefGoogle Scholar
  7. 163.
    Kaya HK, Stock SP (1997) Techniques in insect nematology. In: Lacey LA (ed) Manual of techniques in insect pathology. Academic Press, London, pp 281–324CrossRefGoogle Scholar
  8. 164.
    Woodring JL, Kaya HK (1988) Steinernematid and Heterorhabditid nematodes: a hand-book of techniques. South Co-operative Serv Bull 331(1):30Google Scholar
  9. 165.
    Southey JF (1970) Principles of sampling for mematodes. Technical bulletin. Ministry of Agriculture, Fisheries and Food (5th edn; 2), pp 1–4Google Scholar
  10. 166.
    Seinhorst JW (1959) A rapid method for the transfer of nematodes from fixative to anhydrous glycerin. Nematologica 4(1):67–69CrossRefGoogle Scholar
  11. 167.
    Brenner S (1974) The genetics of Caenorhabditis elegans. Genetics 77(1):71–94CrossRefGoogle Scholar
  12. 168.
    Poinar GO Jr (1967) Description and taxonomic position of the DD-136 nematode (Steinernematidae, Rhabditoidea) and its relationship to Neoaplectana carpocapsae Weiser. Proc Helminthol Soc Wash 34:199–209Google Scholar
  13. 169.
    Mayr E (1978) Origin and history of some terms in systematic and evolutionary biology. Syst Zool 27(1):83–88CrossRefGoogle Scholar
  14. 170.
    Poinar GO Jr, Thomas GM (1966) Significance of Achromobacter nematophilus (Achromobactericeae Eubacteriales) in the development of the nematode, DD-136 (Neoaplectana sp. Steinernematidae). Parasitology 56:385–390CrossRefGoogle Scholar
  15. 171.
    Dix DR, Bridgham JT, Broderius MA, Byersdorfer CA, Eide DJ (1994) The FET4 gene encodes the low affinity Fe(II) transport protein of Saccharomyces cerevisiae. J Biol Chem 269(42):26092–26099CrossRefGoogle Scholar
  16. 172.
    Joyce CM, Steitz TA (1994) Function and structure relationships in DNA polymerases. Annu Rev Biochem 63(1):777–822CrossRefGoogle Scholar
  17. 173.
    Reid MB, Stokić DS, Koch SM, Khawli FA, Leis AA (1994) N-acetylcysteine inhibits muscle fatigue in humans. J Clin Invest 94(6):2468–2474CrossRefGoogle Scholar
  18. 174.
    Hashmi G, Gaugler R (1998) Genetic diversity in insect-parasitic nematodes (Rhabditida: Heterorhabditidae). J Invertebr Pathol 72(3):185–189CrossRefGoogle Scholar
  19. 175.
    Reid IN, Gizis JE (1997) Low-mass binaries in the Hyades-A scarcity of brown dwarfs. arXiv preprint astro-ph/9709226Google Scholar
  20. 176.
    Reid AP, Homonick WM (1998) Molecular taxonomy of Steinernema by RFLP analysis of the ITS region of the ribosomal DNA repeat unit. In: Abad P, Bernell A, Laumond C, Boemare N, Coudert F (eds) COST 819 entomopathogenic nematodes—genetic and molecular biology of entomopathogenic nematodes. Luxembourg EUR 18261, Brussels. pp 87–93Google Scholar
  21. 177.
    Sneath PH, Sokal RR (1973) Numerical taxonomy. The principles and practice of numerical classification. CABI Publishing, Wallingford, UKGoogle Scholar
  22. 178.
    SAS Institute (1992) SAS/STAT software: changes and enhancements. SAS Institute, Cary, NCGoogle Scholar
  23. 5.
    Adams BJ, Burnell AM, Powers TO (1998) A phylogenetic analysis of Heterorhabditis (Nemata: Rhabditidae) based on internal transcribed spacer 1 DNA sequence data. J Nematol 30(1):22–39PubMedPubMedCentralGoogle Scholar
  24. 179.
    Yamamoto S, Harayama S (1995) PCR amplification and direct sequencing of gyrB genes with universal primers and their application to the detection and taxonomic analysis of Pseudomonas putida strains. Appl Environ Microbiol 61(3):1104–1109CrossRefGoogle Scholar
  25. 180.
    Wheeler WC, Gladstein DS (1994) MALIGN: a multiple sequence alignment program. J Hered 85(5):417–418CrossRefGoogle Scholar
  26. 181.
    Nelson G, Platnick N (1981) Systematics and biogeography, cladistics and vicariance. Colombia University Press, New YorkGoogle Scholar
  27. 182.
    Tamura K (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599CrossRefGoogle Scholar
  28. 183.
    Brodsky LI (1992) GeneBee: the program package for biopolymer structure analysis. Dimacs 8:127–139Google Scholar
  29. 184.
    Brodsky LI (1995) GeneBee-NET: an internet-based server for analyzing biopolymers structure. Biochemist 60:1221–1230Google Scholar
  30. 185.
    Felsenstein J (1993) Phylogeny inference package. Department of Genetics, University of Washington, SeattleGoogle Scholar
  31. 186.
    Glazer I, Lewis EE (2000) Bioassays for entomopathogenic nematodes. In: Bioassays of entomopathogenic microbes and nematodes. CABI Publishing, Wallingford, UK, pp 229–247CrossRefGoogle Scholar
  32. 187.
    Miller AD, Rosman GJ (1989) Improved retroviral vectors for gene transfer and expression. Biotechniques 7(9):980PubMedPubMedCentralGoogle Scholar
  33. 188.
    Grewal D, Gotlieb J, Marmorstein H (1994) The moderating effects of message framing and source credibility on the price-perceived risk relationship. J Consum Res 21(1):145–153CrossRefGoogle Scholar
  34. 189.
    Morris DR (1995) Growth control of translation in mammalian cells. In: Progress in nucleic acid research and molecular biology, vol 51. Academic Press, London, pp 339–363Google Scholar
  35. 190.
    Somasekhar N, Grewal PS, De Nardo EA, Stinner BR (2002) Non-target effects of entomopathogenic nematodes on the soil nematode community. J Appl Ecol 39(5):735–744CrossRefGoogle Scholar
  36. 191.
    Shapiro-Ilan DI, Mbata GN, Nguyen KB, Peat SM, Blackburn D, Adams BJ (2009a) Characterization of biocontrol traits in the entomopathogenic nematode Heterorhabditis georgiana (Kesha strain), and phylogenetic analysis of the nematode’s symbiotic bacteria. Biol Control 51(3):377–387CrossRefGoogle Scholar
  37. 192.
    Shapiro-Ilan DI, Reilly CC, Hotchkiss MW (2009b) Suppressive effects of metabolites from Photorhabdus and Xenorhabdus spp. on phytopathogens of peach and pecan. Arch. Phytopathol. Plant Prot 42:715–728Google Scholar
  38. 193.
    Shapiro SL, Schwartz GE, Bonner G (1998) Effects of mindfulness-based stress reduction on medical and premedical students. J Behav Med 21(6):581–599CrossRefGoogle Scholar
  39. 194.
    Kaya HK, Koppenhöfer AM (1996) Effects of microbial and other antagonistic organism and competition on entomopathogenic nematodes. Biocontrol Sci Tech 6(3):357–372CrossRefGoogle Scholar
  40. 195.
    Wharton R, Lewith G (1986) Complementary medicine and the general practitioner. Br Med J (Clin Res Ed) 292(6534):1498–1500CrossRefGoogle Scholar
  41. 196.
    Koppenhöfer AM, Kaya HK (1995) Density-dependent effects on Steinernema glaseri (Nematoda: Steinernematidae) within an insect host. J Parasitol 81(5):797–799CrossRefGoogle Scholar
  42. 197.
    Wouts WM (1981) Mass production of the entomogenous nematode Heterorhabditis heliothidis (Nematode: Heterorhabditidae) on artificial media. J Nematol 13:467–469Google Scholar
  43. 198.
    Dye DW (1968) A taxonomic study of the genus Erwinia I. The ‘amylovora’ group. N Z J Sci 11:590–607Google Scholar
  44. 199.
    Strauch O, Ehlers RU (1998) Food signal production of Photorhabdus luminescens inducing the recovery of entomopathogenic nematodes Heterorhabditis spp. in liquid culture. Appl Microbiol Biotechnol 50(3):369–374CrossRefGoogle Scholar
  45. 200.
    Abbott WS (1925) A method of computing the effectiveness of an insecticide. J Econ Entomol 18:265–267CrossRefGoogle Scholar

Copyright information

© The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature 2021

Authors and Affiliations

  1. 1.Department of BiotechnologyBharathidasan UniversityTiruchirappalliIndia
  2. 2.Department of BiotechnologyMother Teresa Women’s UniversityKodaikanalIndia

Personalised recommendations