Chemical Ecology

Part of the Springer Protocols Handbooks book series (SPH)


The third stage of Infective juveniles (IJs) habitually traces suitable hosts when the insects feed, through chemical cues produced from plant roots damaged by herbivores. EPNs are attracted to CO2 and volatile substances emitted by soil insects and plant roots. Besides, other chemical mixtures, belonging to diverse chemical categories persuade chemotaxis in nematodes. Multitrophic interactions that use and exchange this chemical information play key role in protection of plant and predator-prey mechanics in the chemical ecology of EPNs.

Various protocols are examined to study the complexity of adaptations in a chemical ecology of a chemically mediated tritrophic interactions among plants, insects and nematodes.


Chemotaxis CO2 Sensory neurons Chemical attractant Volatile cues Semiochemical Olfactometer 


  1. 121.
    Hu Y, Benedict MA, Ding L, Núñez G (1999) Role of cytochrome c and dATP/ATP hydrolysis in Apaf-1-mediated caspase-9 activation and apoptosis. EMBO J 18:3586–3595CrossRefGoogle Scholar
  2. 135.
    Ali JG, Alborn HT, Stelinski LL (2010) Subterranean herbivore-induced volatiles released by citrus roots upon feeding by Diaprepes abbreviatus recruit entomopathogenic nematodes. J Chem Ecol 36(4):361–368CrossRefGoogle Scholar
  3. 136.
    Rasmann S, Köllner TG, Degenhardt J, Hiltpold I, Toepfer S, Kuhlmann U, Turlings TC (2005) Recruitment of entomopathogenic nematodes by insect-damaged maize roots. Nature 434(7034):732–737CrossRefGoogle Scholar
  4. 137.
    Gulcu B, Hazir S, Kaya HK (2012) Scavenger deterrent factor (SDF) from symbiotic bacteria of entomopathogenic nematodes. J Invertebr Pathol 110(3):326–333CrossRefGoogle Scholar
  5. 138.
    Lu JL, Luo W, Li XY, Yang SQ, Cao JX, Gong XG, Xiang HJ (2017) Two-dimensional node-line semimetals in a honeycomb-kagome lattice. Chin Phys Lett 34(5):057302CrossRefGoogle Scholar
  6. 139.
    Turlings TC, Hiltpold I, Rasmann S (2012) The importance of root-produced volatiles as foraging cues for entomopathogenic nematodes. Plant Soil 358(1–2):51–60CrossRefGoogle Scholar
  7. 140.
    Gang SS, Hallem EA (2016) Mechanisms of host seeking by parasitic nematodes. Mol Biochem Parasitol 208(1):23–32CrossRefGoogle Scholar
  8. 141.
    Hallem EA, Dillman AR, Hong AV, Zhang Y, Yano JM, SF DM, Sternberg PW (2011) A sensory code for host seeking in parasitic nematodes. Curr Biol 21(5):377–383CrossRefGoogle Scholar
  9. 142.
    Gaugler R, Lebeck L, Nakagaki B, Boush GM (1980) Orientation of the entomogenous nematode Neoaplectana carpocapsae to carbon dioxide. Environ Entomol 9(5):649–652CrossRefGoogle Scholar
  10. 143.
    Laznik Ž, Trdan S (2016) Attraction behaviors of entomopathogenic nematodes (Steinernematidae and Heterorhabditidae) to synthetic volatiles emitted by insect-damaged carrot roots. J Pest Sci 89(4):977–984CrossRefGoogle Scholar
  11. 144.
    Robinson AF (1995) Optimal release rates for attracting MeloIDogyne incognita, Rotylenchulus reniformis, and other nematodes to carbon dioxIDe in sand. J Nematol 27:42–50PubMedPubMedCentralGoogle Scholar
  12. 145.
    Ali MS, Kim GD, Seo HW, Jung EY, Kim BW, Yang HS, Joo ST (2011) Possibility of making low-fat sausages from duck meat with addition of rice flour. Asian Australas J Anim Sci 24(3):421–428CrossRefGoogle Scholar
  13. 146.
    O'Halloran DM, Burnell AM (2003) An investigation of chemotaxis in the insect parasitic nematode Heterorhabditis bacteriophora. Parasitology 127(4):375CrossRefGoogle Scholar
  14. 147.
    Köllner TG, Held M, Lenk C, Hiltpold I, Turlings TC, Gershenzon J, Degenhardt J (2008) A maize (E)-β-caryophyllene synthase implicated in indirect defense responses against herbivores is not expressed in most American maize varieties. Plant Cell 20(2):482–494CrossRefGoogle Scholar
  15. 148.
    Helms AM, Ray S, Matulis NL, Kuzemchak MC, Grisales W, Tooker JF, Ali JG (2019) Chemical cues linked to risk: cues from below-ground natural enemies enhance plant defences and influence herbivore behaviour and performance. Funct Ecol 33(5):798–808CrossRefGoogle Scholar
  16. 149.
    Dillman AR, Sternberg PW (2012) Entomopathogenic nematodes. Curr Biol 22(11):R430–R431CrossRefGoogle Scholar
  17. 150.
    Campbell JF, Kaya HK (1999) How and why a parasitic nematode jumps. Nature 397(6719):485–486CrossRefGoogle Scholar
  18. 151.
    Laznik Z, Trdan S (2013) An investigation on the chemotactic responses of different entomopathogenic nematode strains to mechanically damaged maize root volatile compounds. Exp Parasitol 134(3):349–355CrossRefGoogle Scholar
  19. 152.
    Ward S (1973) Chemotaxis by the nematode Caenorhabditis elegans: identification of attractants and analysis of the response by use of mutants. Proc Natl Acad Sci U S A 70:817–821CrossRefGoogle Scholar
  20. 153.
    Bargmann CI, Horvitz HR (1991) Chemosensory neurons with overlapping functions direct chemotaxis to multiple chemicals in C. elegans. Neuron 7(5):729–742CrossRefGoogle Scholar
  21. 154.
    Baiocchi T, Lee G, Choe DH, Dillman AR (2017) Host seeking parasitic nematodes use specific odors to assess host resources. Sci Rep 7(1):1–13CrossRefGoogle Scholar
  22. 155.
    Dillman AR, Chaston JM, Adams BJ, Ciche TA, Goodrich-Blair H, Stock SP, Sternberg PW (2012) An entomopathogenic nematode by any other name. PLoS Pathog 8(3):e1002527CrossRefGoogle Scholar
  23. 156.
    Baiocchi T, Dillman AR (2015) Chemotaxis and jumping assays in nematodes. Bio-protocol 5:e1587CrossRefGoogle Scholar
  24. 157.
    Stilwell RL, Samaniego AC, Atkinson B (2017) U.S. Patent No. 9,801,975. U.S. Patent and Trademark Office, Washington, DCGoogle Scholar

Copyright information

© The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature 2021

Authors and Affiliations

  1. 1.Department of BiotechnologyBharathidasan UniversityTiruchirappalliIndia
  2. 2.Department of BiotechnologyMother Teresa Women’s UniversityKodaikanalIndia

Personalised recommendations