Skip to main content

Part of the book series: Springer Protocols Handbooks ((SPH))

  • 328 Accesses

Abstract

The third stage of Infective juveniles (IJs) habitually traces suitable hosts when the insects feed, through chemical cues produced from plant roots damaged by herbivores. EPNs are attracted to CO2 and volatile substances emitted by soil insects and plant roots. Besides, other chemical mixtures, belonging to diverse chemical categories persuade chemotaxis in nematodes. Multitrophic interactions that use and exchange this chemical information play key role in protection of plant and predator-prey mechanics in the chemical ecology of EPNs.

Various protocols are examined to study the complexity of adaptations in a chemical ecology of a chemically mediated tritrophic interactions among plants, insects and nematodes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hu Y, Benedict MA, Ding L, Núñez G (1999) Role of cytochrome c and dATP/ATP hydrolysis in Apaf-1-mediated caspase-9 activation and apoptosis. EMBO J 18:3586–3595

    Article  CAS  Google Scholar 

  2. Ali JG, Alborn HT, Stelinski LL (2010) Subterranean herbivore-induced volatiles released by citrus roots upon feeding by Diaprepes abbreviatus recruit entomopathogenic nematodes. J Chem Ecol 36(4):361–368

    Article  CAS  Google Scholar 

  3. Rasmann S, Köllner TG, Degenhardt J, Hiltpold I, Toepfer S, Kuhlmann U, Turlings TC (2005) Recruitment of entomopathogenic nematodes by insect-damaged maize roots. Nature 434(7034):732–737

    Article  CAS  Google Scholar 

  4. Gulcu B, Hazir S, Kaya HK (2012) Scavenger deterrent factor (SDF) from symbiotic bacteria of entomopathogenic nematodes. J Invertebr Pathol 110(3):326–333

    Article  CAS  Google Scholar 

  5. Lu JL, Luo W, Li XY, Yang SQ, Cao JX, Gong XG, Xiang HJ (2017) Two-dimensional node-line semimetals in a honeycomb-kagome lattice. Chin Phys Lett 34(5):057302

    Article  Google Scholar 

  6. Turlings TC, Hiltpold I, Rasmann S (2012) The importance of root-produced volatiles as foraging cues for entomopathogenic nematodes. Plant Soil 358(1–2):51–60

    Article  CAS  Google Scholar 

  7. Gang SS, Hallem EA (2016) Mechanisms of host seeking by parasitic nematodes. Mol Biochem Parasitol 208(1):23–32

    Article  CAS  Google Scholar 

  8. Hallem EA, Dillman AR, Hong AV, Zhang Y, Yano JM, SF DM, Sternberg PW (2011) A sensory code for host seeking in parasitic nematodes. Curr Biol 21(5):377–383

    Article  CAS  Google Scholar 

  9. Gaugler R, Lebeck L, Nakagaki B, Boush GM (1980) Orientation of the entomogenous nematode Neoaplectana carpocapsae to carbon dioxide. Environ Entomol 9(5):649–652

    Article  Google Scholar 

  10. Laznik Ž, Trdan S (2016) Attraction behaviors of entomopathogenic nematodes (Steinernematidae and Heterorhabditidae) to synthetic volatiles emitted by insect-damaged carrot roots. J Pest Sci 89(4):977–984

    Article  Google Scholar 

  11. Robinson AF (1995) Optimal release rates for attracting MeloIDogyne incognita, Rotylenchulus reniformis, and other nematodes to carbon dioxIDe in sand. J Nematol 27:42–50

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Ali MS, Kim GD, Seo HW, Jung EY, Kim BW, Yang HS, Joo ST (2011) Possibility of making low-fat sausages from duck meat with addition of rice flour. Asian Australas J Anim Sci 24(3):421–428

    Article  Google Scholar 

  13. O'Halloran DM, Burnell AM (2003) An investigation of chemotaxis in the insect parasitic nematode Heterorhabditis bacteriophora. Parasitology 127(4):375

    Article  CAS  Google Scholar 

  14. Köllner TG, Held M, Lenk C, Hiltpold I, Turlings TC, Gershenzon J, Degenhardt J (2008) A maize (E)-β-caryophyllene synthase implicated in indirect defense responses against herbivores is not expressed in most American maize varieties. Plant Cell 20(2):482–494

    Article  Google Scholar 

  15. Helms AM, Ray S, Matulis NL, Kuzemchak MC, Grisales W, Tooker JF, Ali JG (2019) Chemical cues linked to risk: cues from below-ground natural enemies enhance plant defences and influence herbivore behaviour and performance. Funct Ecol 33(5):798–808

    Article  Google Scholar 

  16. Dillman AR, Sternberg PW (2012) Entomopathogenic nematodes. Curr Biol 22(11):R430–R431

    Article  CAS  Google Scholar 

  17. Campbell JF, Kaya HK (1999) How and why a parasitic nematode jumps. Nature 397(6719):485–486

    Article  CAS  Google Scholar 

  18. Laznik Z, Trdan S (2013) An investigation on the chemotactic responses of different entomopathogenic nematode strains to mechanically damaged maize root volatile compounds. Exp Parasitol 134(3):349–355

    Article  CAS  Google Scholar 

  19. Ward S (1973) Chemotaxis by the nematode Caenorhabditis elegans: identification of attractants and analysis of the response by use of mutants. Proc Natl Acad Sci U S A 70:817–821

    Article  CAS  Google Scholar 

  20. Bargmann CI, Horvitz HR (1991) Chemosensory neurons with overlapping functions direct chemotaxis to multiple chemicals in C. elegans. Neuron 7(5):729–742

    Article  CAS  Google Scholar 

  21. Baiocchi T, Lee G, Choe DH, Dillman AR (2017) Host seeking parasitic nematodes use specific odors to assess host resources. Sci Rep 7(1):1–13

    Article  CAS  Google Scholar 

  22. Dillman AR, Chaston JM, Adams BJ, Ciche TA, Goodrich-Blair H, Stock SP, Sternberg PW (2012) An entomopathogenic nematode by any other name. PLoS Pathog 8(3):e1002527

    Article  CAS  Google Scholar 

  23. Baiocchi T, Dillman AR (2015) Chemotaxis and jumping assays in nematodes. Bio-protocol 5:e1587

    Article  Google Scholar 

  24. Stilwell RL, Samaniego AC, Atkinson B (2017) U.S. Patent No. 9,801,975. U.S. Patent and Trademark Office, Washington, DC

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Sivaramakrishnan, S., Razia, M. (2021). Chemical Ecology. In: Entomopathogenic Nematodes and Their Symbiotic Bacteria. Springer Protocols Handbooks. Springer, New York, NY. https://doi.org/10.1007/978-1-0716-1445-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1445-7_7

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-0716-1444-0

  • Online ISBN: 978-1-0716-1445-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics