Advertisement

Biology

Protocol
  • 24 Downloads
Part of the Springer Protocols Handbooks book series (SPH)

Abstract

The life cycle of the entomopathogenic nematodes Steinernema and Heterorhabditis consists of two phases namely a free-living phase in the soil and a parasitic phase inside the insect host. Steinernema IJs use ambusher strategy and Heterorhabditis IJs use cruiser strategy to locate their insect host. IJs enter the insect host through natural openings like mouth, anus and spiracles or cuticle. The metabolites produced by bacteria are lethal to the larvae and the host insect is killed by septicemia or toxemia. The bacterial metabolites have a wide-spectrum of antimicrobial activity. Biocontrol potential of EPNs depends on the mutualism amongst a host-seeking nematode and a lethal insect-pathogenic bacterium.

Keywords

Life cycle Infective juveniles Host Septicemia Metabolites Biocontrol 

References

  1. 1.
    Kaya HK, Gaugler R (1993) Entomopathogenic nematodes. Annu Rev Entomol 38:181–206CrossRefGoogle Scholar
  2. 21.
    Boemare NE (2002) Biology, taxonomy and systematics of Photorhabdus and Xenorhabdus. In: Gaugler R (ed) Entomopathogenic nematology. CABI Publishing, Wallingford, UK, pp 35–56CrossRefGoogle Scholar
  3. 40.
    Poinar GO (1990) Taxonomy and biology of Steinernematidae and Heterorhabditidae. In: Gaugler R, Kaya HK (eds) Entomopathogenic nematodes in biological control. CRC Press, Boca Raton, FL, pp 23–61Google Scholar
  4. 75.
    Akhurst RJ (1986a) Xenorhabdus nematophilus subsp. poinarii: its interaction with insect pathogenic nematodes. Syst Appl Microbiol 8(1–2):142–147CrossRefGoogle Scholar
  5. 76.
    Akhurst RJ (1986b) Xenorhabdus nematophilus subsp. beddingii (Enterobacteriaceae): a new subspecies of bacteria mutualistically associated with entomopathogenic nematodes. Int J Syst Bacteriol 36:454–457CrossRefGoogle Scholar
  6. 93.
    Mahmoud MF, Mahfouz HM, Mohamed KM (2016) Compatibility of entomopathogenic nematodes with neonctinoids and azadirachtin insecticides for controlling the black cutworm, Agrotis ipsilon (Hufnagel) in canola plants. IJEST 2(1):11–18Google Scholar
  7. 94.
    Ehlers RU (2001) Mass production of entomopathogenic nematodes for plant protection. Appl Microbiol Biotechnol 56(5–6):623–633CrossRefGoogle Scholar
  8. 95.
    Kondo E, Ishibashi N (1986) Nictating behavior and infectivity of entomogenous nematodes, Steinernema spp., to the larvae of common cutworm, Spodoptera litura (Lepidoptera: Noctuidae), on the soil surface. Appl Entomol Zool 21(4):553–560CrossRefGoogle Scholar
  9. 96.
    Strauch E, Arnold W, Alijah R, Wohlleben W, Puhler A, Eckes P, Wengenmayer F (1994) U.S. Patent No. 5,276,268. U.S. Patent and Trademark Office, Washington, DCGoogle Scholar
  10. 97.
    Griffin CT, Boemare NE, Lewis EE (2005) Biology and behavior. In: Grewal PS, Ehler R-U, Shapiro-Ilan DI (eds) Nematodes as biocontrol agents. CABI Publishing, Wallingford, UK, pp 47–64CrossRefGoogle Scholar
  11. 98.
    Kaya HK, Koppenhöfer AM (1999) Biology and ecology of insecticidal nematodes. In: Optimal use of insecticidal nematodes in pest management. IntechOpen, Croatia, pp 1–8Google Scholar
  12. 99.
    Sivaramakrishnan S, Razia M (2015) Sustainability of entomopathogenic nematodes against crop pests. In: Biocontrol of lepidopteran pests. Springer, Cham, pp 315–328CrossRefGoogle Scholar
  13. 100.
    Chen MJ (1996) Competitor analysis and interfirm rivalry: toward a theoretical integration. Acad Manag Rev 21:100–134CrossRefGoogle Scholar
  14. 101.
    Li J, Chen G, Webster JM (1997) Nematophin, a novel antimicrobial substance produced by Xenorhabdus nematophilus (Enterobactereaceae). Can J Microbiol 43:770–773CrossRefGoogle Scholar
  15. 102.
    McInerney BV, Taylor WC, Lacey MJ, Akhurst RJ, Gregson RP (1991) Biologically active metabolites from Xenorhabdus spp. Part 2. Benzopyran-1-one derivatives with gastroprotective activity. J Nat Prod 54:785–795CrossRefGoogle Scholar
  16. 103.
    Webster SP, Alexeev D, Campopiano DJ, Watt RM, Alexeeva M, Sawyer L, Baxter RL (2000) Mechanism of 8-amino-7-oxononanoate synthase: spectroscopic, kinetic, and crystallographic studies. Biochemistry 39(3):516–528CrossRefGoogle Scholar
  17. 104.
    Razia M, Karthik Raja R, Padmanaban K, Chellapandi P, Sivaramakrishnan S (2010) A phylogenetic approach for assigning function of b-ketoacyl synthase I in entomopathogenic bacteria (Photorhabdus luminescens subsp. laumondii TT01). J Comput Sci Syst Biol 3:21–29Google Scholar
  18. 105.
    Akhurst RJ (1982) Antibiotic activity of Xenorhabdus spp., bacteria symbiotically associated with insect pathogenic nematodes of the families Heterorhabditidae and Steinernematidae. J Gen Microbiol 128:3061–3065PubMedGoogle Scholar
  19. 106.
    Khush RS, Lemaitre B (2000) Genes that fight infection: what the Drosophila genome says about animal immunity. Trends Genet 16:442–449CrossRefGoogle Scholar
  20. 107.
    Chaston JM, Suen G, Tucker SL, Andersen AW, Bhasin A, Bode E (2011) The entomopathogenic bacterial endosymbionts Xenorhabdus and Photorhabdus: convergent lifestyles from divergent genomes. PLoS One 6(11):e27909CrossRefGoogle Scholar
  21. 108.
    Ogier J, Calteau A, Forst SJ, Blair H, Roche D, Rouy Z, Suen G, Zumbihl R, Givaudan A, Tailliez P, Médigue C, Gaudriault S (2010) Units of plasticity in bacterial genomes: new insight from the comparative genomics of two bacteria interacting with invertebrates, Photorhabdus and Xenorhabdus. BMC Genomics 11:568CrossRefGoogle Scholar
  22. 109.
    Boemare NE, Boyer-Giglio MH, Thaler JO, Akhurst RJ, Brehelin M (1992) Lysogeny and bacteriocinogeny in Xenorhabdus nematophilus, and other Xenorhabdus spp. Appl Environ Microbiol 58:3032–3037CrossRefGoogle Scholar
  23. 110.
    Böszörményi E, Ersek T, Fodor A, Fodor AM, Földes LS, Hevesi M, Hogan JS, Katona Z, Klein MG, Kormány A, Pekár S, Szentirmai A, Sztaricskai F, Taylor RA (2009) Isolation and activity of Xenorhabdus antimicrobial compounds against the plant pathogens Erwinia amylovora and Phytophthora nicotianae. J Appl Microbiol 107:746–759CrossRefGoogle Scholar
  24. 111.
    Xiao Q, Komori H, Lee CY (2012) Klumpfuss distinguishes stem cells from progenitor cells during asymmetric neuroblast division. Development 139(15):2670–2680CrossRefGoogle Scholar
  25. 112.
    Fuchs MA, Sato K, Niedzwiecki D, Ye X, Saltz LB, Mayer RJ et al (2014) Sugar-sweetened beverage intake and cancer recurrence and survival in CALGB 89803 (Alliance). PLoS One 9(6):e99816CrossRefGoogle Scholar
  26. 113.
    Tobias NJ, Heinrich AK, Eresmann H, Wright PR, Neubacher N, Backofen R, Bode HB (2017) Photorhabdus-nematode symbiosis is dependent on hfq-mediated regulation of secondary metabolites. Environ Microbiol 19:119–129CrossRefGoogle Scholar
  27. 114.
    Zhou Y, Chen C, Johansson MJ (2013) The pre-mRNA retention and splicing complex controls tRNA maturation by promoting TAN1 expression. Nucleic Acids Res 41(11):5669–5678CrossRefGoogle Scholar
  28. 115.
    Bode GH, Coué G, Freese C, Pickl KE, Sanchez-Purrà M, Albaiges B, Borrós S, van Winden EC, Tziveleka LA, Sideratou Z, Engbersen JFJ, Singh S, Albrecht K, Groll J, Möller M, Pötgens AJG, Schmitz C, Fröhlich E, Grandfils C, Sinner FM, Kirkpatrick CJ, Steinbusch HWM, Frank HG, Unger RE, Martinez-Martinez P (2017) An in vitro and in vivo study of peptide-functionalized nanoparticles for brain targeting: the importance of selective blood–brain barrier uptake. Nanomed Nanotechnol Biol Med 13:1289–1300CrossRefGoogle Scholar
  29. 116.
    Reimer D, Luxenburger E, Brachmann AO, Bode HB (2009) A new type of pyrrolidine biosynthesis is involved in the late steps of xenocoumacin production in Xenorhabdus nematophila. Chembiochem 10:1997–2001CrossRefGoogle Scholar
  30. 117.
    Sugar DR, Murfin KE, Chaston JM, Andersen AW, Richards GR, deLéon L (2012) Phenotypic variation and host interactions of Xenorhabdus bovienii SS-2004, the entomopathogenic symbiont of Steinernema jollieti nematodes. Environ Microbiol 14:924–939CrossRefGoogle Scholar
  31. 118.
    Park HB, Perez CE, Perry EK, Crawford JM (2016) Activating and attenuating the amicoumacin antibiotics. Molecules 21:E824CrossRefGoogle Scholar
  32. 119.
    Reimer D, Nollmann FI, Schultz K, Kaiser M, Bode HB (2014) Xenortide biosynthesis by entomopathogenic Xenorhabdus nematophila. J Nat Prod 77:1976–1980CrossRefGoogle Scholar
  33. 120.
    Hu MCT, Qiu WR, Wang X, Meyer CF, Tan T-H (1996) Human HPK1, a novel human hematopoietic progenitor kinase that activates the JNK/SAPK kinase cascade. Genes Dev 10:2251–2264CrossRefGoogle Scholar
  34. 121.
    Hu Y, Benedict MA, Ding L, Núñez G (1999) Role of cytochrome c and dATP/ATP hydrolysis in Apaf-1-mediated caspase-9 activation and apoptosis. EMBO J 18:3586–3595CrossRefGoogle Scholar
  35. 122.
    Webster MS, Marra PP, Haig SM, Bensch S, Holmes RT (2002) Links between worlds: unraveling migratory connectivity. Trends Ecol Evol 17:76–83CrossRefGoogle Scholar
  36. 123.
    Gaugler R, Kaya HK (1990) Entomopathogenic nematodes in biological control. CRC Press, Boca Raton, FLGoogle Scholar
  37. 124.
    Cutler GC, Webster JM (2003) Host-finding ability of three entomopathogenic nematode isolates in the presence of plant roots. Nematology 5(4):601–608CrossRefGoogle Scholar
  38. 125.
    Glaser RW, Farrell CC (1935) Field experiments with the Japanese beetle and its nematode parasite. J N Y Entomol Soc. 43pGoogle Scholar
  39. 126.
    Razia M, Karthik Raja R, Padmanaban K, Chellapandi P, Sivaramakrishnan S (2010) A phylogenetic approach for assigning function of b-ketoacyl synthase I in Entomopathogenic bacteria (Photorhabdus luminescens subsp. laumondii TT01). J Computer Science and System Biology 3: 021_029Google Scholar

Copyright information

© The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature 2021

Authors and Affiliations

  1. 1.Department of BiotechnologyBharathidasan UniversityTiruchirappalliIndia
  2. 2.Department of BiotechnologyMother Teresa Women’s UniversityKodaikanalIndia

Personalised recommendations