Advertisement

Field Application Techniques for Control of Insect Pests

Protocol
  • 22 Downloads
Part of the Springer Protocols Handbooks book series (SPH)

Abstract

The field application of entomopathogenic nematodes for control of insect pests requires knowledge of the occurrence, species diversity, biology, ecology, distribution and insect host range of native EPN species. Commercially produced EPN species are applied in the crop fields as safe and effective biocontrol agents. Formulation helps in the safe storing and transporting of the mass-produced EPNs. The components and effectiveness of various formulations, survivability tests and infectivity tests are described. Application efficacy depends on the selection of the right nematode species to match against the target insect and application should be started as soon as the insect pest population is observed to cause crop damage. Soil application procedures are explained.

Keywords

Formulation Additives Equipments Compatibility Chemicals 

References

  1. 1.
    Kaya HK, Gaugler R (1993) Entomopathogenic nematodes. Annu Rev Entomol 38:181–206CrossRefGoogle Scholar
  2. 188.
    Grewal D, Gotlieb J, Marmorstein H (1994) The moderating effects of message framing and source credibility on the price-perceived risk relationship. J Consum Res 21(1):145–153CrossRefGoogle Scholar
  3. 207.
    Lewis P, Abbeduto L, Murphy M, Richmond E, Giles N, Bruno L, Orsmond G (2006) Psychological well-being of mothers of youth with fragile X syndrome: syndrome specificity and within-syndrome variability. J Intellect Disabil Res 50(12):894–904CrossRefGoogle Scholar
  4. 208.
    Aliyu A, Kariim I, Abdulkareem SA (2017) Effects of aspect ratio of multi-walled carbon nanotubes on coal washery waste water treatment. J Environ Manag 202:84–93CrossRefGoogle Scholar
  5. 209.
    Grewal SI, Elgin SC (2002) Heterochromatin: new possibilities for the inheritance of structure. Curr Opin Genet Dev 12(2):178–187CrossRefGoogle Scholar
  6. 210.
    Yukawa T, Pitt JM (1985) Nematode storage and transport. Int. Patent WO85/03412Google Scholar
  7. 211.
    Kaya HK, Nelson CE (1985) Encapsulation of steinernematid and heterorhabditid nematodes with calcium alginate: a new approach for insect control and other applications. Environ Entomol 14:572–574CrossRefGoogle Scholar
  8. 212.
    Grewal PS, Peters A (2005) Formulation and quality. In: Nematodes as biocontrol agents. CABI Publishing, Wallingford, UK, pp 79–90CrossRefGoogle Scholar
  9. 213.
    Bedding R (1990) Logistics and strategies for introducing entomopathogenic nematode technology into developing countries. In: Gaugler R, Kaya HK (eds) Entomopathogenic nematodes in biological control. CRC Press, Boca Raton, FL, pp 233–246Google Scholar
  10. 214.
    Capinera JL, Hibbard BE (1987) Bait formulations of chemical and microbial insecticides for suppression of crop-feeding grasshoppers. J Agric Entomol 4(4):337–340Google Scholar
  11. 215.
    Geoffrey J, Ilham S, Turlings T (2019) Encapsulated entomopathogenic nematodes can protect maize plants from Diabrotica balteata larvae. Insects 11:27Google Scholar
  12. 216.
    Georgis R (1990) Formulation and application technology. In: Gaugler R, Kaya HK (eds) Entomopathogenic nematodes in biological control. CRC Press, Boca Raton, FL, pp 173–194Google Scholar
  13. 217.
    Koppenhöfer AM, Brown IM, Gaugler R, Grewal PS, Kaya HK, Klein MG (2000) Synergism of entomopathogenic nematodes and imidacloprid against white grubs: greenhouse and field evaluation. Biol Control 19(3):245–251CrossRefGoogle Scholar
  14. 218.
    Koppenhofer AM, Grewal PS (2005) 20 compatibility and interactions with agrochemicals and other biocontrol agents. In: Nematodes as biocontrol agents. CABI Publishing, Wallingford, UK, p 363CrossRefGoogle Scholar
  15. 219.
    Alumai A, Grewal PS (2004) Tank-mix compatibility of the entomopathogenic nematodes, Heterorhabditis bacteriophora and Steinernema carpocapsae, with selected chemical pesticides used in turfgrass. Biocontrol Sci Technol 14(7):725–730CrossRefGoogle Scholar
  16. 220.
    Nishimatsu T, Jackson JJ (1998) Interaction of insecticides, entomopathogenic nematodes, and larvae of the western corn root worm (Coleoptera: Chrysomelidae). J Econ Entomol 91(2):410–418CrossRefGoogle Scholar
  17. 221.
    Anes KM, Ganguly S (2016) Pesticide compatibility with entomopathogenic nematode, Steinernema thermophilum (Nematoda: Rhabditida). Indian J Nematol 46(1):20–26Google Scholar
  18. 222.
    Shetlar DJ, Suleman PE, Georgis R (1988) Irrigation and use of entomogenous nematodes, Neoaplectana spp. and Heterorhabditis heliothidis (Rhabditida: Steinernematidae and Heterorhabditidae), for control of Japanese beetle (Coleoptera: Scarabaeidae) grubs in turfgrass. J Econ Entomol 81(5):1318–1322CrossRefGoogle Scholar
  19. 223.
    Georgis JF, Chauzy S, Coquillat S (1995) Computed conditions of corona emission from two interacting raindrops. Q J R Meteorol Soc 121(528):1853–1866CrossRefGoogle Scholar
  20. 224.
    Scher HI, Yagoda A, Herr HW, Sternberg CN, Bosl G, Morse MJ, Geller N (1988) Neoadjuvant M-VAC (methotrexate, vinblastine, doxorubicin and cisplatin) effect on the primary bladder lesion. J Urol 139(3):470–474CrossRefGoogle Scholar
  21. 225.
    McCoy CW, Shapiro DI, Duncan LW, Nguyen K (2000a) Entomopathogenic nematodes and other natural enemies as mortality factors for larvae of Diaprepes abbreviatus (Coleoptera: Curculionidae). Biol Control 19:182–190CrossRefGoogle Scholar
  22. 226.
    Gouge DH, Reaves LL, Stoltman MM, Van Berkum JR, Burke RA, Jech LJ, Henneberry TJ (1996) Control of pink bollworm Pectinophora gossypiella (Saunders) larvae in Arizona and Texas cotton fields using the entomopathogenic nematode Steinernema riobravis (Cabanillas, Poinar, & Raulston) (Rhabditida: Steinernematidae). In: Richter DA, Armour J (eds) Proceedings of’ the Beltwide cotton production research conference. National Cotton Council of America, Memphis. pp 1078–1082Google Scholar
  23. 227.
    Wright RJ, Witkowski JF, Echtenkamp G, Georgis R (1993) Efficacy and persistence of Steinernema carpocapsae (Rhabditida: Steinernematidae) applied through a center-pivot irrigation system against larval corn rootworms (Coleoptera: Chrysomelidae). J Econ Entomol 86:1348–1354CrossRefGoogle Scholar
  24. 228.
    Curran J (1992) Influence of application method and pest population size on weld efficacy of entomopathogenic nematodes. J Nematol 24:631–636PubMedPubMedCentralGoogle Scholar
  25. 229.
    Reed DK, Reed GL, Creighton CS (1986) Introduction of entomogenous nematodes into trickle irrigation systems to control striped cucumber beetle, Acalymma vittatum (Coleoptera: Chrysomelidae). J Econ Entomol 79:1330–1333CrossRefGoogle Scholar
  26. 230.
    McCoy CW, Shapiro DI, Duncan LW (2000b) Application and evaluation of entomopatho gens for citrus pest control. In: Lacey L, Kaya HK (eds) Manual of techniques in insect pathology: field techniques. Kluwer Academic Publishers, Dordrecht, Holland, pp 577–597Google Scholar
  27. 231.
    Kaya HK (1990) Soil ecology. In: Gaugler R, Kaya HK (eds) Entomopathogenic nematodes in biological control. CRC Press, Boca Raton, FL, pp 93–116Google Scholar
  28. 232.
    Klein MG, Georgis R (1992) Persistence of control of Japanese beetle (Coleoptera: Scarabaeidae) larvae with steinernematid and heterorhabditid nematodes. J Econ Entomol 85:727–730CrossRefGoogle Scholar
  29. 233.
    Shapiro DI, Lewis EE, Paramasivam S, McCoy CW (2000) Nitrogen partitioning in Heterorhabditis bacteriophora-infected hosts and the eVects of nitrogen on attraction/repulsion. J Invertebr Pathol 76:43–48CrossRefGoogle Scholar
  30. 234.
    Shapiro-Ilan DI, Gouge DH, Koppenhöfer AM (2002) Factors affecting commercial success: case studies in cotton, turf and citrus. In: Gaugler R (ed) Entomopathogenic nematology. CABI Publishing, Wallingford, UK, pp 333–356CrossRefGoogle Scholar

Copyright information

© The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature 2021

Authors and Affiliations

  1. 1.Department of BiotechnologyBharathidasan UniversityTiruchirappalliIndia
  2. 2.Department of BiotechnologyMother Teresa Women’s UniversityKodaikanalIndia

Personalised recommendations