Skip to main content

Virus-Induced Gene Silencing for Functional Analysis of Flower Traits in Petunia

  • Protocol
  • First Online:
  • 951 Accesses

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2172))

Abstract

Virus-induced gene silencing (VIGS) uses recombinant viruses to knock down the expression of endogenous plant genes, allowing for rapid functional analysis without generating stable transgenic plants. The Tobacco rattle virus (TRV) is a popular vector for VIGS because it has a wide host range that includes Petunia × hybrida (petunia), and it induces minimal viral symptoms. Using reporter genes like chalcone synthase (CHS) in tandem with a gene of interest (GOI; pTRV2-PhCHS-GOI), it is possible to visually identify silenced flowers so that phenotyping is more accurate. Inoculation methods and environmental conditions need to be optimized for each host plant-virus interaction to maximize silencing efficiency. This chapter will provide detailed protocols for VIGS in petunia, with an emphasis on the investigation of flower phenotypes.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Napoli C, Lemieux C, Jorgensen R (1990) Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. Plant Cell 2:279–289. https://doi.org/10.1105/tpc.2.4.279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Burch-Smith TM, Anderson JC, Martin GB, Dinesh-Kumar SP (2004) Applications and advantages of virus-induced gene silencing for gene function studies in plants. Plant J 39:734–746. https://doi.org/10.1111/j.1365-313X.2004.02158.x

    Article  CAS  PubMed  Google Scholar 

  3. Ratcliff F, Martin-Hernandez AM, Baulcombe DC (2001) Tobacco rattle virus as a vector for analysis of gene function by silencing. Plant J 25:237–245. https://doi.org/10.1046/j.0960-7412.2000.00942.x

    Article  CAS  PubMed  Google Scholar 

  4. Liu Y, Schiff M, Marathe R, Dinesh-Kumar SP (2002) Tobacco Rar1, EDS1 and NPR1/NIM1 like genes are required for N-mediated resistance to tobacco mosaic virus. Plant J 30:415–429. https://doi.org/10.1046/j.1365-313X.2002.01297.x

    Article  CAS  PubMed  Google Scholar 

  5. Chen J-C, Jiang C-Z, Gookin T et al (2004) Chalcone synthase as a reporter in virus-induced gene silencing studies of flower senescence. Plant Mol Biol 55:521–530. https://doi.org/10.1007/s11103-004-0590-7

    Article  CAS  PubMed  Google Scholar 

  6. Broderick SR, Jones ML (2014) An optimized protocol to increase virus-induced gene silencing efficiency and minimize viral symptoms in petunia. Plant Mol Biol Rep 32:219–233. https://doi.org/10.1007/s11105-013-0647-3

    Article  CAS  Google Scholar 

  7. Spitzer B, Zvi MMB, Ovadis M et al (2007) Reverse genetics of floral scent: application of tobacco rattle virus-based gene silencing in petunia. Plant Physiol 145:1241–1250. https://doi.org/10.1104/pp.107.105916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Noor SH, Ushijima K, Murata A et al (2014) Double flower formation induced by silencing of C-class MADS-box genes and its variation among petunia cultivars. Sci Hortic 178:1–7. https://doi.org/10.1016/j.scienta.2014.07.029

    Article  CAS  Google Scholar 

  9. Becker A, Lange M (2010) VIGS – genomics goes functional. Trends Plant Sci 15:1–4. https://doi.org/10.1016/j.tplants.2009.09.002

    Article  CAS  PubMed  Google Scholar 

  10. Robertson D (2004) VIGS vectors for gene silencing: many targets, many tools. Annu Rev Plant Biol 55:495–519. https://doi.org/10.1146/annurev.arplant.55.031903.141803

    Article  CAS  PubMed  Google Scholar 

  11. Kumagai MH, Donson J, della-Cioppa G et al (1995) Cytoplasmic inhibition of carotenoid biosynthesis with virus-derived RNA. Proc Natl Acad Sci U S A 92:1679–1683. https://doi.org/10.1073/pnas.92.5.1679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tian J, Pei H, Zhang S et al (2014) TRV–GFP: a modified tobacco rattle virus vector for efficient and visualizable analysis of gene function. J Exp Bot 65:311–322. https://doi.org/10.1093/jxb/ert381

    Article  CAS  PubMed  Google Scholar 

  13. Cheng C, Gao J, Ma N (2018) Investigation of petal senescence by TRV-mediated virus-induced gene silencing in rose. In: Guo Y (ed) Plant senescence: methods and protocols. Springer New York, New York, pp 49–63

    Chapter  Google Scholar 

  14. Liang Y-C, Reid MS, Jiang C-Z (2014) Controlling plant architecture by manipulation of gibberellic acid signalling in petunia. Hortic Res 1:14061. https://doi.org/10.1038/hortres.2014.61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wu C, Jia L, Goggin F (2011) The reliability of virus-induced gene silencing experiments using tobacco rattle virus in tomato is influenced by the size of the vector control. Mol Plant Pathol 12:299–305. https://doi.org/10.1111/j.1364-3703.2010.00669.x

    Article  CAS  PubMed  Google Scholar 

  16. Hartl M, Merker H, Schmidt DD, Baldwin IT (2008) Optimized virus-induced gene silencing in Solanum nigrum reveals the defensive function of leucine aminopeptidase against herbivores and the shortcomings of empty vector controls. New Phytol 179:356–365. https://doi.org/10.1111/j.1469-8137.2008.02479.x

    Article  CAS  PubMed  Google Scholar 

  17. Brigneti G, Martín-Hernández AM, Jin H et al (2004) Virus-induced gene silencing in Solanum species. Plant J 39:264–272. https://doi.org/10.1111/j.1365-313X.2004.02122.x

    Article  CAS  PubMed  Google Scholar 

  18. Ghazala W, Varrelmann M (2007) Tobacco rattle virus 29K movement protein is the elicitor of extreme and hypersensitive-like resistance in two cultivars of Solanum tuberosum. Mol Plant Microbe Interact 20:1396–1405. https://doi.org/10.1094/MPMI-20-11-1396

    Article  CAS  PubMed  Google Scholar 

  19. Liu Y, Schiff M, Dinesh-Kumar SP (2002) Virus-induced gene silencing in tomato. Plant J 31:777–786. https://doi.org/10.1046/j.1365-313X.2002.01394.x

    Article  CAS  PubMed  Google Scholar 

  20. Sun D, Li S, Niu L et al (2017) PhOBF1, a petunia ocs element binding factor, plays an important role in antiviral RNA silencing. J Exp Bot 68:915–930. https://doi.org/10.1093/jxb/erw490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sun D, Nandety RS, Zhang Y et al (2016) A petunia ethylene-responsive element binding factor, PhERF2, plays an important role in antiviral RNA silencing. J Exp Bot 67:3353–3365. https://doi.org/10.1093/jxb/erw155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wang H, Chang X, Lin J et al (2018) Transcriptome profiling reveals regulatory mechanisms underlying corolla senescence in petunia. Horticult Res 5:16. https://doi.org/10.1038/s41438-018-0018-1

    Article  CAS  Google Scholar 

  23. Cna’ani A, Spitzer-Rimon B, Ravid J et al (2015) Two showy traits, scent emission and pigmentation, are finely coregulated by the MYB transcription factor PH4 in petunia flowers. New Phytol 208:708–714. https://doi.org/10.1111/nph.13534

    Article  CAS  PubMed  Google Scholar 

  24. Bombarely A, Moser M, Amrad A et al (2016) Insight into the evolution of the Solanaceae from the parental genomes of Petunia hybrida. Nat Plants 2:16074. https://doi.org/10.1038/nplants.2016.74

    Article  CAS  PubMed  Google Scholar 

  25. Hernandez-Garcia CM, Bouchard RA, Rushton PJ et al (2010) High level transgenic expression of soybean (Glycine max) GmERF and Gmubi gene promoters isolated by a novel promoter analysis pipeline. BMC Plant Biol 10:237. https://doi.org/10.1186/1471-2229-10-237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ryu C-M, Anand A, Kang L, Mysore KS (2004) Agrodrench: a novel and effective agroinoculation method for virus-induced gene silencing in roots and diverse Solanaceous species. Plant J 40:322–331. https://doi.org/10.1111/j.1365-313X.2004.02211.x

    Article  CAS  PubMed  Google Scholar 

  27. Mallona I, Lischewski S, Weiss J et al (2010) Validation of reference genes for quantitative real-time PCR during leaf and flower development in Petunia hybrida. BMC Plant Biol 10:4. https://doi.org/10.1186/1471-2229-10-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Senthil-Kumar M, Mysore KS (2011) Virus-induced gene silencing can persist for more than 2 years and also be transmitted to progeny seedlings in Nicotiana benthamiana and tomato. Plant Biotechnol J 9:797–806. https://doi.org/10.1111/j.1467-7652.2011.00589.x

    Article  CAS  PubMed  Google Scholar 

  29. Hammer PA, Hopper DA (1997) Experimental design. In: Langhans R, Tibbitts T (eds) Plant growth chamber handbook. Iowa State University, Ames, IA, pp 177–187

    Google Scholar 

  30. Hellemans J, Mortier G, Paepe AD et al (2007) qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biol 8:r19. https://doi.org/10.1186/gb-2007-8-2-r19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bustin SA, Benes V, Garson JA et al (2009) The MIQE guidelines: Minimum Information for publication of Quantitative real-time PCR Experiments. Clin Chem 55:611–622. https://doi.org/10.1373/clinchem.2008.112797

    Article  CAS  PubMed  Google Scholar 

  32. Gelotte K (2007) Image color extract. Cool PHP tools. https://www.coolphptools.com/color_extract

  33. Ye J, Coulouris G, Zaretskaya I et al (2012) Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics 13:134. https://doi.org/10.1186/1471-2105-13-134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yuan B, Latek R, Hossbach M et al (2004) siRNA Selection Server: an automated siRNA oligonucleotide prediction server. Nucleic Acids Res 32:W130–W134. https://doi.org/10.1093/nar/gkh366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Senthil-Kumar M, Hema R, Anand A et al (2007) A systematic study to determine the extent of gene silencing in Nicotiana benthamiana and other Solanaceae species when heterologous gene sequences are used for virus-induced gene silencing. New Phytol 176:782–791. https://doi.org/10.1111/j.1469-8137.2007.02225.x

    Article  CAS  PubMed  Google Scholar 

  36. Tuttle JR, Haigler CH, Robertson D (2015) Virus-induced gene silencing of fiber-related genes in cotton. In: Mysore KS, Senthil-Kumar M (eds) Plant gene silencing: methods and protocols. Springer New York, New York, pp 219–234

    Chapter  Google Scholar 

  37. Fernandez-Pozo N, Rosli HG, Martin GB, Mueller LA (2015) The SGN VIGS tool: user-friendly software to design virus-induced gene silencing (VIGS) constructs for functional genomics. Mol Plant 8:486–488. https://doi.org/10.1016/j.molp.2014.11.024

    Article  CAS  PubMed  Google Scholar 

  38. Purkayastha A, Dasgupta I (2009) Virus-induced gene silencing: a versatile tool for discovery of gene functions in plants. Plant Physiol Biochem 47:967–976. https://doi.org/10.1016/j.plaphy.2009.09.001

    Article  CAS  PubMed  Google Scholar 

  39. Gargul JM, Mibus H, Serek M (2015) Manipulation of MKS1 gene expression affects Kalanchoë blossfeldiana and Petunia hybrida phenotypes. Plant Biotechnol J 13:51–61. https://doi.org/10.1111/pbi.12234

    Article  CAS  PubMed  Google Scholar 

  40. Wilson DE, Chosewood LC (2009) Biosafety in microbiological and biomedical laboratories, 5th edn. U.S. Department of Health and Human Services, Washington, DC

    Google Scholar 

  41. Chapin LJ, Jones ML (2009) Ethylene regulates phosphorus remobilization and expression of a phosphate transporter (PhPT1) during petunia corolla senescence. J Exp Bot 60:2179–2190. https://doi.org/10.1093/jxb/erp092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the American Floral Endowment, the CFAES Research Competitive Grants Program, and The Ohio State University D.C. Kiplinger Floriculture Endowment for funding support. Salaries and research support were provided in part by state and federal funds appropriated to the OARDC, The Ohio State University, and by USDA Hatch MIS-212060, Mississippi State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michelle L. Jones .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Broderick, S.R., Chapin, L.J., Jones, M.L. (2020). Virus-Induced Gene Silencing for Functional Analysis of Flower Traits in Petunia. In: Courdavault, V., Besseau, S. (eds) Virus-Induced Gene Silencing in Plants. Methods in Molecular Biology, vol 2172. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0751-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0751-0_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0750-3

  • Online ISBN: 978-1-0716-0751-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics