Skip to main content

Virus-Induced Gene Silencing in Lilies Using Cucumber Mosaic Virus Vectors

  • Protocol
  • First Online:
Book cover Virus-Induced Gene Silencing in Plants

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2172))

Abstract

Virus-induced gene silencing (VIGS) systems are effective for rapid analysis of gene functions in plants that require a long period of growth such as Lilium. We successfully developed a VIGS system using the cucumber mosaic virus (HL strain, CMV-HL) vector to induce RNA silencing of the L. leichtlinii phytoene desaturase gene (LlPDS), where at 30 days postinoculation (dpi), photo-bleaching was observed in the upper leaves of L. leichtlinii, and at 57 dpi, white regions appeared on flower tepals that accumulate orange carotenoids. This vector spreads in bulbs, and it could induce silencing on emerged shoots in the following year. The CMV-HL vector can be easily constructed by insertion of a 30–60 nt fragment into the cloning site of the RNA3 genome. In this chapter, we describe how to use the CMV-HL vector system in the context of Lilium plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vilsack T, Clark CZF (2009) US census of agriculture, 2007, vol 1. United States Department of Agriculture, Washington, DC, p 51

    Google Scholar 

  2. Ministry of Agriculture, Forestry and Fisheries of Japan (2016) The 90th statistical yearbook of Ministry of Agriculture, Forestry and Fisheries. http://www.maff.go.jp/e/data/stat/90th/index.html#20. Accessed 6 Apr 2019

  3. Huang J, Liu X, Wang J, Lü Y (2014) Transcriptomic analysis of Asiatic lily in the process of vernalization via RNA-seq. Mol Biol Rep 41:3839–3852

    Article  CAS  Google Scholar 

  4. Suzuki K, Suzuki T, Nakatsuka T, Dohra H, Yamagishi M, Matsuyama K, Matsuura H (2016) RNA-seq-based evaluation of bicolor tepal pigmentation in Asiatic hybrid lilies (Lilium spp.). BMC Genomics 17:611

    Article  Google Scholar 

  5. Villacorta-Martin C, Núñez de Cáceres González FF, de Haan J, Huijben K, Passarinho P, Hamo MLB et al (2015) Whole transcriptome profiling of the vernalization process in Lilium longiflorum (cultivar White Heaven) bulbs. BMC Genomics 16:550

    Article  Google Scholar 

  6. Wang J, Yang Y, Liu X, Huang J, Wang Q, Gu J et al (2014) Transcriptome profiling of the cold response and signaling pathways in Lilium lancifolium. BMC Genomics 15:203

    Article  Google Scholar 

  7. Yamagishi M, Uchiyama H, Handa T (2018) Floral pigmentation pattern in Oriental hybrid lily (Lilium spp.) cultivar ‘Dizzy’ is caused by transcriptional regulation of anthocyanin biosynthesis genes. J Plant Physiol 228:85–91

    Article  CAS  Google Scholar 

  8. Azadi P, Chin DP, Kuroda K, Khan RS, Mii M (2010) Macro elements in inoculation and co-cultivation medium strongly affect the efficiency of Agrobacterium-mediated transformation in Lilium. Plant Cell Tissue Organ Cult 101:201–209

    Article  CAS  Google Scholar 

  9. Ogaki M, Furuichi Y, Kuroda K, Chin DP, Ogawa Y, Mii M (2008) Importance of co-cultivation medium pH for successful Agrobacterium-mediated transformation of Lilium×formolongi. Plant Cell Rep 27:699–705

    Article  CAS  Google Scholar 

  10. Fatihah HNN, Moñino López D, Arkel G, Schaart JG, Visser RGF, Krens FA (2019) The ROSEA1 and DELILA transcription factors control anthocyanin biosynthesis in Nicotiana benthamiana and Lilium flowers. Sci Hortic 243:327–337

    Article  CAS  Google Scholar 

  11. Yamagishi M, Shimoyamada Y, Nakatsuka T, Masuda K (2010) Two R2R3-MYB genes, homologs of petunia AN2, regulate anthocyanin biosyntheses in flower tepals, tepal spots and leaves of Asiatic hybrid lily. Plant Cell Physiol 51:463–474

    Article  CAS  Google Scholar 

  12. Pflieger S, Richard MMS, Blanchet S, Meziadi C, Geffroy V (2013) VIGS technology: an attractive tool for functional genomics studies in legumes. Funct Plant Biol 40:1234–1248

    Article  CAS  Google Scholar 

  13. Hagita T, Kodama F, Akai J (1989) The virus diseases of lily in Hokkaido. Jpn J Phytopathol 55:1–8. (in Japanese)

    Article  Google Scholar 

  14. Masuta C, Seshimo Y, Mukohara M, Jung HJ, Ueda S, Ryu KH et al (2002) Evolutionary characterization of two lily isolates of Cucumber mosaic virus isolated in Japan and Korea. J Gen Plant Pathol 68:163–168

    Article  CAS  Google Scholar 

  15. Tasaki K, Terada H, Masuta C, Yamagishi M (2016) Virus­induced gene silencing (VIGS) in Lilium leichtlinii using the Cucumber mosaic virus vector. Plant Biotechnol 33:373–381

    Article  CAS  Google Scholar 

  16. Yamaguchi N, Seshimo Y, Yoshimoto E, Ahn HI, Ryu KH, Choi JK, Masuta C (2005) Genetic mapping of the compatibility between a lily isolate of Cucumber mosaic virus and a satellite RNA. J Gen Virol 86:2359–2369

    Article  CAS  Google Scholar 

  17. Ui-Tei K, Naito Y, Takahashi F, Haraguchi T, Ohki-Hamazaki H, Juni A et al (2004) Guidelines for the selection of highly effective siRNA sequences for mammalian and chick RNA interference. Nucleic Acids Res 32:936–948

    Article  CAS  Google Scholar 

  18. Reynolds A, Leake D, Boese Q, Scaringe S, Marshall WS, Khvorova A (2004) Rational siRNA design for RNA interference. Nat Biotechnol 22:326–330

    Article  CAS  Google Scholar 

  19. Varkonyi-Gasic E, Wu R, Wood M, Walton EF, Hellens RP (2007) Protocol: a highly sensitive RT-PCR method for detection and quantification of microRNAs. Plant Methods 3:12

    Article  Google Scholar 

  20. Czimmerer Z, Hulvely J, Simandi Z, Varallyay E, Havelda Z, Szabo E, Varga A, Dezso B, Balogh M, Horvath A, Domokos B, Torok Z, Nagy L, Balint BL (2013) A versatile method to design stem-loop primer-based quantitative PCR assays for detecting small regulatory RNA molecules. PLoS One 8:e55168

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the Hokuren Federation of Agricultural Cooperatives, Sapporo, Japan for offering the virus-free Lilium leichtlinii bulbs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chikara Masuta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Tasaki, K., Yamagishi, M., Masuta, C. (2020). Virus-Induced Gene Silencing in Lilies Using Cucumber Mosaic Virus Vectors. In: Courdavault, V., Besseau, S. (eds) Virus-Induced Gene Silencing in Plants. Methods in Molecular Biology, vol 2172. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0751-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0751-0_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0750-3

  • Online ISBN: 978-1-0716-0751-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics