Skip to main content

Freeze-Fracture Replica Immunolabeling of Cryopreserved Membrane Compartments, Cultured Cells and Tissues

  • Protocol
  • First Online:
Caveolae

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2169))

Abstract

Membrane topology information and views of membrane-embedded protein complexes promote our understanding of membrane organization and cell biological function involving membrane compartments. Freeze-fracturing of biological membranes offers both stunning views onto integral membrane proteins and perpendicular views over wide areas of the membrane at electron microscopical resolution. This information is directly assessable for 3D analyses and quantitative analyses of the distribution of components within the membrane if it were possible to specifically detect the components of interest in the membranes. Freeze-fracture replica immunolabeling (FRIL) achieves just that. In addition, FRIL preserves antigens in their genuine cellular context free of artifacts of chemical fixation, as FRIL uses chemically unfixed cellular samples that are rapidly cryofixed. In principle, the method is not limited to integral proteins spanning the membrane. Theoretically, all membrane components should be addressable as long as they are antigenic, embedded into at least one membrane leaflet, and accessible for immunolabeling from either the intracellular or the extracellular side. Consistently, integral proteins spanning both leaflets and only partially inserted membrane proteins have been successfully identified and studied for their molecular organization and distribution in the membrane and/or in relationship to specialized membrane domains. Here we describe the freeze-fracturing of both cultured cells and tissues and the sample preparations that allowed for a successful immunogold-labeling of caveolin1 and caveolin3 or even for double-immunolabelings of caveolins with members of the syndapin family of membrane-associating and -shaping BAR domain proteins as well as with cavin 1. For this purpose samples are cryopreserved, fractured, and replicated. We also describe how the obtained stabilized membrane fractures are then cleaned to remove all loosely attached material and immunogold labeled to finally be viewed by transmission electron microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Steere RL (1957) Electron microscopy of structural detail in frozen biological specimens. J Biophys Biochem Cytol 3(1):45–60

    Article  CAS  Google Scholar 

  2. Deamer DW, Branton D (1967) Fracture planes in an ice-bilayer model membrane system. Science 158(3801):655–657

    Article  CAS  Google Scholar 

  3. Singer SJ, Nicolson GL (1972) The fluid mosaic model of the structure of cell membranes. Science 175(4023):720–731

    Article  CAS  Google Scholar 

  4. Severs NJ (2007) Freeze-fracture electron microscopy. Nat Protoc 2(3):547–576

    Article  CAS  Google Scholar 

  5. da Silva PP, Branton D (1970) Membrane splitting in freeze-etching covalently bound ferritin as a membrane marker. J Cell Biol 45(3):598–605

    Article  Google Scholar 

  6. Dinchuk JE, Johnson TJ, Rash JE (1987) Postreplication labeling of E-leaflet molecules: membrane immunoglobulins localized in sectioned, labeled replicas examined by TEM and HVEM. J Electron Microsc Tech 7(1):1–16

    Article  CAS  Google Scholar 

  7. Gruijters WT, Kistler J, Bullivant S et al (1987) Immunolocalization of MP70 in lens fiber 16-17-nm intercellular junctions. J Cell Biol 104(3):565–572

    Article  CAS  Google Scholar 

  8. Fujimoto K (1995) Freeze-fracture replica electron microscopy combined with SDS digestion for cytochemical labeling of integral membrane proteins. Application to the immunogold labeling of intercellular junctional complexes. J Cell Sci 108(11):3443–3449

    CAS  PubMed  Google Scholar 

  9. Mansouri M, Kasugai Y, Fukazawa Y et al (2015) Distinct subsynaptic localization of type 1 metabotropic glutamate receptors at glutamatergic and GABA ergic synapses in the rodent cerebellar cortex. Eur J Neurosci 41(2):157–167

    Article  Google Scholar 

  10. Kasugai Y, Swinny JD, Roberts JDB et al (2010) Quantitative localisation of synaptic and extrasynaptic GABAA receptor subunits on hippocampal pyramidal cells by freeze-fracture replica immunolabelling. Eur J Neurosci 32(11):1868–1888

    Article  Google Scholar 

  11. Indriati DW, Kamasawa N, Matsui K et al (2013) Quantitative localization of Cav2.1 (P/Q-type) voltage-dependent calcium channels in Purkinje cells: somatodendritic gradient and distinct somatic coclustering with calcium-activated potassium channels. J Neurosci 33(8):3668–3678

    Article  CAS  Google Scholar 

  12. Kaufmann W, Kasugai Y, Ferraguti F et al (2010) Two distinct pools of large-conductance calcium-activated potassium channels in the somatic plasma membrane of central principal neurons. Neuroscience 169(3):974–986

    Article  CAS  Google Scholar 

  13. Fujimoto T, Kogo H, Nomura R et al (2000) Isoforms of caveolin-1 and caveolar structure. J Cell Sci 113(19):3509–3517

    CAS  PubMed  Google Scholar 

  14. Westermann M, Steiniger F, Richter W (2005) Belt-like localisation of caveolin in deep caveolae and its re-distribution after cholesterol depletion. Histochem Cell Biol 123(6):613–620

    Article  CAS  Google Scholar 

  15. Koch D, Westermann M, Kessels MM et al (2012) Ultrastructural freeze-fracture immunolabeling identifies plasma membrane-localized syndapin II as a crucial factor in shaping caveolae. Histochem Cell Biol 138(2):215–230

    Article  CAS  Google Scholar 

  16. Seemann E, Sun M, Krueger S et al (2017) Deciphering caveolar functions by syndapin III KO-mediated impairment of caveolar invagination. elife 6:e29854

    Article  Google Scholar 

  17. Fujimoto T, Kogo H, Ishiguro K et al (2001) Caveolin-2 is targeted to lipid droplets, a new “membrane domain” in the cell. J Cell Biol 152(5):1079–1085

    Article  CAS  Google Scholar 

  18. Schneider K, Seemann E, Liebmann L et al (2014) ProSAP1 and membrane nanodomain-associated syndapin I promote postsynapse formation and function. J Cell Biol 205(2):197–215

    Article  CAS  Google Scholar 

  19. Qualmann B, Roos J, DiGregorio PJ et al (1999) Syndapin I, a synaptic dynamin-binding protein that associates with the neural Wiskott-Aldrich syndrome protein. Mol Biol Cell 10(2):501–513

    Article  CAS  Google Scholar 

  20. Qualmann B, Kelly RB (2000) Syndapin isoforms participate in receptor-mediated endocytosis and actin organization. J Cell Biol 148(5):1047–1062

    Article  CAS  Google Scholar 

  21. Modregger J, Ritter B, Witter B et al (2000) All three PACSIN isoforms bind to endocytic proteins and inhibit endocytosis. J Cell Sci 113(24):4511–4521

    CAS  PubMed  Google Scholar 

  22. Kessels MM, Qualmann B (2004) The syndapin protein family: linking membrane trafficking with the cytoskeleton. J Cell Sci 117(Pt 15):3077–3086

    Article  CAS  Google Scholar 

  23. Quan A, Robinson PJ (2013) Syndapin–a membrane remodelling and endocytic F-BAR protein. FEBS J 280(21):5198–5212

    Article  CAS  Google Scholar 

  24. Kessels MM, Qualmann B (2015) Different functional modes of BAR domain proteins in formation and plasticity of mammalian postsynapses. J Cell Sci 128(17):3177–3185

    Article  CAS  Google Scholar 

  25. McMahon HT, Gallop JL (2005) Membrane curvature and mechanisms of dynamic cell membrane remodelling. Nature 438(7068):590–596

    Article  CAS  Google Scholar 

  26. Frost A, Unger VM, De Camilli P (2009) The BAR domain superfamily: membrane-molding macromolecules. Cell 137(2):191–196

    Article  CAS  Google Scholar 

  27. Qualmann B, Koch D, Kessels MM (2011) Let’s go bananas: revisiting the endocytic BAR code. EMBO J 30(17):3501–3515

    Article  CAS  Google Scholar 

  28. Peter BJ, Kent HM, Mills IG et al (2004) BAR domains as sensors of membrane curvature: the amphiphysin BAR structure. Science 303(5657):495–499

    Article  CAS  Google Scholar 

  29. Wang Q, Navarro MV, Peng G et al (2009) Molecular mechanism of membrane constriction and tubulation mediated by the F-BAR protein Pacsin/Syndapin. Proc Natl Acad Sci U S A 106(31):12700–12705

    Article  CAS  Google Scholar 

  30. Monier S, Parton RG, Vogel F et al (1995) VIP21-caveolin, a membrane protein constituent of the caveolar coat, oligomerizes in vivo and in vitro. Mol Biol Cell 6(7):911–927

    Article  CAS  Google Scholar 

  31. Parton RG, Hanzal-Bayer M, Hancock JF (2006) Biogenesis of caveolae: a structural model for caveolin-induced domain formation. J Cell Sci 119(5):787–796

    Article  CAS  Google Scholar 

  32. Zobel T, Brinkmann K, Koch N et al (2015) Cooperative functions of the two F-BAR proteins Cip4 and Nostrin in regulating E-cadherin in epithelial morphogenesis. J Cell Sci 128(3):499–515

    Article  CAS  Google Scholar 

  33. Schlörmann W, Steiniger F, Richter W et al (2010) The shape of caveolae is omega-like after glutaraldehyde fixation and cup-like after cryofixation. Histochem Cell Biol 133(2):223–228

    Article  Google Scholar 

  34. Fujita A, Fujimoto T (2007) Quantitative retention of membrane lipids in the freeze-fracture replica. Histochem Cell Biol 128(5):385–389

    Article  CAS  Google Scholar 

  35. Schlörmann W, John M, Steiniger F et al (2007) Improved antigen retrieval in freeze-fracture cytochemistry by evaporation of carbon as first replication layer. Histochem Cell Biol 127(6):633–639

    Article  Google Scholar 

  36. Bocker HT, Heinrich T, Liebmann L et al (2019) The Na+/H+ exchanger Nhe1 modulates network excitability via GABA release. Cereb Cortex 29(10):4263–4276

    Article  Google Scholar 

  37. Wolf D, Hofbrucker-MacKenzie SA, Izadi M, Seemann E, Steiniger F, Schwintzer L, Koch D, Kessels MM, Qualmann B (2018) Ankyrin repeat-containing N-Ank proteins shape cellular membranes. Nat Cell Biol 21(10):1191–1205

    Google Scholar 

Download references

Acknowledgments

We would like to acknowledge the support from the Electron Microscopy Center, Jena University Hospital.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Michael M. Kessels or Britta Qualmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Seemann, E., Kessels, M.M., Qualmann, B. (2020). Freeze-Fracture Replica Immunolabeling of Cryopreserved Membrane Compartments, Cultured Cells and Tissues. In: Blouin, C. (eds) Caveolae. Methods in Molecular Biology, vol 2169. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0732-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0732-9_2

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0731-2

  • Online ISBN: 978-1-0716-0732-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics