Advertisement

Glucan-Encapsulated siRNA Particles (GeRPs) for Specific Gene Silencing in Kupffer Cells in Mouse Liver

Protocol
  • 496 Downloads
Part of the Methods in Molecular Biology book series (MIMB, volume 2164)

Abstract

Here, we describe a protocol to prepare and administer glucan-encapsulated RNAi particles (GeRPs), for specific delivery of siRNA and subsequent gene silencing in Kupffer cells (KCs) in mice. This technology is based on baker’s yeast and allows gene manipulation in macrophages in a tissue-specific manner depending on the route of administration and the model that is used. GeRP administered by intravenous injection in mice are delivered to KCs. Therefore, using the GeRP technology to silence genes provides a unique method to study the function of factors expressed by KCs in the regulation of liver function.

Key words

RNAi delivery Intravenous administration Kupffer cells Mouse liver Gene silencing Obesity Diabetes Inflammation Insulin sensitivity 

Notes

Acknowledgments

This work was supported by research grants from the Czech Science Foundation GACR 20-03586S and the START UP program from Institute of Physiology, the Czech Academy of Sciences.

References

  1. 1.
    Bogdanos DP, Gao B, Gershwin ME (2013) Liver immunology. Compr Physiol 3(2):567–598.  https://doi.org/10.1002/cphy.c120011CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Robinson MW, Harmon C, O’Farrelly C (2016) Liver immunology and its role in inflammation and homeostasis. Cell Mol Immunol 13(3):267–276.  https://doi.org/10.1038/cmi.2016.3. Epub 2016 Apr 11CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Smedsrod B, Pertoft H, Gustafson S, Laurent TC (1990) Scavenger functions of the liver endothelial cell. Biochem J 266(2):313–327CrossRefGoogle Scholar
  4. 4.
    Knook DL, Sleyster EC (1976) Separation of Kupffer and endothelial cells of the rat liver by centrifugal elutriation. Exp Cell Res 99(2):444–449CrossRefGoogle Scholar
  5. 5.
    Kmieć Z (2001) Cooperation of liver cells in health and disease. Adv Anat Embryol Cell Biol 161:III–XIII, 1–151PubMedGoogle Scholar
  6. 6.
    Wang X, Sato R, Brown MS, Hua X, Goldstein JL (1994) SREBP-1, a membrane-bound transcription factor released by sterol-regulated proteolysis. Cell 77(1):53–62CrossRefGoogle Scholar
  7. 7.
    Jungermann K, Thurman RG (1992) Hepatocyte heterogeneity in the metabolism of carbohydrates. Enzyme 46(1–3):33–58CrossRefGoogle Scholar
  8. 8.
    Morgantini C, Jager J, Li X, Levi L, Azzimato V, Sulen A, Barreby E, Xu C, Tencerova M , Näslund E, Kumar Ch, Verdeguer F, Straniero S, Hultenby K, Björkström NK, Ellis E, Rydén M, Kutter C, Hurrey T, Lauschke V, Boucher J, Tomčala A, Krejčová G, Bajgar A, Aouadi M (2019) Liver macrophages regulate metabolism independently of inflammation. Nat Metab. 1, 497. Published 25 Mar 2019Google Scholar
  9. 9.
    Jager J, Aparicio-Vergara M, Aouadi M (2016) Liver innate immune cells and insulin resistance: the multiple facets of Kupffer cells. J Intern Med 280(2):209–220.  https://doi.org/10.1111/joim.12483. Epub 2016 Feb 11CrossRefPubMedGoogle Scholar
  10. 10.
    Baffy G (2009) Kupffer cells in non-alcoholic fatty liver disease: the emerging view. J Hepatol 51(1):212–223.  https://doi.org/10.1016/j.jhep.2009.03.008CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Stienstra R, Saudale F, Duval C, Keshtkar S, Groener JE, van Rooijen N, Staels B, Kersten S, Muller M (2010) Kupffer cells promote hepatic steatosis via interleukin-1beta-dependent suppression of peroxisome proliferator-activated receptor alpha activity. Hepatology 51(2):511–522.  https://doi.org/10.1002/hep.23337CrossRefPubMedGoogle Scholar
  12. 12.
    Tencerova M, Aouadi M, Vangala P, Nicoloro SM, Yawe JC, Cohen JL, Shen Y, Garcia-Menendez L, Pedersen DJ, Gallagher-Dorval K, Perugini RA, Gupta OT, Czech MP (2015) Activated Kupffer cells inhibit insulin sensitivity in obese mice. FASEB J 29(7):2959–2969.  https://doi.org/10.1096/fj.15-270496CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Tosello-Trampont AC, Landes SG, Nguyen V, Novobrantseva TI, Hahn YS (2012) Kuppfer cells trigger nonalcoholic steatohepatitis development in diet-induced mouse model through tumor necrosis factor-alpha production. J Biol Chem 287(48):40161–40172.  https://doi.org/10.1074/jbc.M112.417014CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Petrasek J, Bala S, Csak T, Lippai D, Kodys K, Menashy V, Barrieau M, Min SY, Kurt-Jones EA, Szabo G (2012) IL-1 receptor antagonist ameliorates inflammasome-dependent alcoholic steatohepatitis in mice. J Clin Invest 122(10):3476–3489.  https://doi.org/10.1172/jci60777CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Aouadi M, Tesz GJ, Nicoloro SM, Wang M, Chouinard M, Soto E, Ostroff GR, Czech MP (2009) Orally delivered siRNA targeting macrophage map 4k4 suppresses systemic inflammation. Nature 458(7242):1180–1184.  https://doi.org/10.1038/nature07774CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Aouadi M, Tencerova M, Vangala P, Yawe JC, Nicoloro SM, Amano SU, Cohen JL, Czech MP (2013) Gene silencing in adipose tissue macrophages regulates whole-body metabolism in obese mice. Proc Natl Acad Sci U S A 110(20):8278–8283.  https://doi.org/10.1073/pnas.1300492110CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Aouadi M, Vangala P, Yawe JC, Tencerova M, Nicoloro SM, Cohen JL, Shen Y, Czech MP (2014) Lipid storage by adipose tissue macrophages regulates systemic glucose tolerance. Am J Physiol Endocrinol Metab 307(4):E374–E383.  https://doi.org/10.1152/ajpendo.00187.2014CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Department of Molecular Physiology of BoneInstitute of Physiology Czech Academy of SciencesPragueCzech Republic

Personalised recommendations