Kupffer Cells pp 129-143 | Cite as

A Transposon-Based Mouse Model of Hepatocellular Carcinoma via Hydrodynamic Tail Vein Injection

Part of the Methods in Molecular Biology book series (MIMB, volume 2164)


Transgenic mouse are reliable, convenient models for studying human hepatocellular carcinoma (HCC). The development of a synthetically engineered Sleeping Beauty (SB) transposon system further enables the viral-free, efficient delivery of desired oncogenes to mouse tissues. Here, we describe an SB transposon-based approach to induce HCC in mice by expressing a hyperactive form of N-RAS, N-RASG12V, while silencing the endogenous Trp53 gene via hydrodynamic tail vein injection, a method to rapidly deliver naked plasmids to mouse liver.

Key words

Hepatocellular carcinoma Mouse tumor model N-RAS p53 Sleeping Beauty Hydrodynamic tail vein injection 


  1. 1.
    Bray F, Ferlay J, Soerjomataram I et al (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68(6):394–424. Scholar
  2. 2.
    Forner A, Reig M, Bruix J (2018) Hepatocellular carcinoma. Lancet 391(10127):1301–1314. S0140-6736(18)30010-2 [pii]CrossRefGoogle Scholar
  3. 3.
    He L, Tian DA, Li PY et al (2015) Mouse models of liver cancer: progress and recommendations. Oncotarget 6(27):23306–23322. eCollectionCrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Suda T, Liu D (2007) Hydrodynamic gene delivery: its principles and applications. Mol Ther 15(12):2063–2069. S1525-0016(16)32719-8 [pii]CrossRefGoogle Scholar
  5. 5.
    Duan M, Hao J, Cui S et al (2018) Diverse modes of clonal evolution in HBV-related hepatocellular carcinoma revealed by single-cell genome sequencing. Cell Res 28(3):359–373. Scholar
  6. 6.
    Carlson CM, Frandsen JL, Kirchhof N et al (2005) Somatic integration of an oncogene-harboring Sleeping Beauty transposon models liver tumor development in the mouse. Proc Natl Acad Sci U S A 102(47):17059–17064. Scholar
  7. 7.
    Yant SR, Meuse L, Chiu W et al (2000) Somatic integration and long-term transgene expression in normal and haemophilic mice using a DNA transposon system. Nat Genet 25(1):35–41. Scholar
  8. 8.
    Ivics Z, Hackett PB, Plasterk RH et al (1997) Molecular reconstruction of Sleeping Beauty, a Tc1-like transposon from fish, and its transposition in human cells. Cell 91(4):501–510. S0092-8674(00)80436-5 [pii]CrossRefGoogle Scholar
  9. 9.
    Yant SR, Park J, Huang Y et al (2004) Mutational analysis of the N-terminal DNA-binding domain of Sleeping Beauty transposase: critical residues for DNA binding and hyperactivity in mammalian cells. Mol Cell Biol 24(20):9239–9247. Scholar
  10. 10.
    Heindryckx F, Colle I, Van Vlierberghe H (2009) Experimental mouse models for hepatocellular carcinoma research. Int J Exp Pathol 90(4):367–386. Scholar
  11. 11.
    Keng VW, Tschida BR, Bell JB et al (2011) Modeling hepatitis B virus X-induced hepatocellular carcinoma in mice with the Sleeping Beauty transposon system. Hepatology 53(3):781–790. Scholar
  12. 12.
    Chung SI, Moon H, Ju HL et al (2016) Comparison of liver oncogenic potential among human RAS isoforms. Oncotarget 7(6):7354–7366. eCollectionCrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Kang TW, Yevsa T, Woller N et al (2011) Senescence surveillance of pre-malignant hepatocytes limits liver cancer development. Nature 479(7374):547–551. Scholar
  14. 14.
    Bieging KT, Mello SS, Attardi LD (2014) Unravelling mechanisms of p53-mediated tumour suppression. Nat Rev Cancer 14(5):359–370. Scholar
  15. 15.
    Teramoto T, Satonaka K, Kitazawa S et al (1994) P53 gene abnormalities are closely related to hepatoviral infections and occur at a late stage of hepatocarcinogenesis. Cancer Res 54(1):231–235PubMedGoogle Scholar
  16. 16.
    Schulze K, Imbeaud S, Letouze E et al (2015) Exome sequencing of hepatocellular carcinomas identifies new mutational signatures and potential therapeutic targets. Nat Genet 47(5):505–511. Scholar
  17. 17.
    Wiesner SM, Decker SA, Larson JD et al (2009) De novo induction of genetically engineered brain tumors in mice using plasmid DNA. Cancer Res 69(2):431–439. Scholar
  18. 18.
    Rudalska R, Dauch D, Longerich T et al (2014) In vivo RNAi screening identifies a mechanism of sorafenib resistance in liver cancer. Nat Med 20(10):1138–1146. Scholar
  19. 19.
    Tordella L, Khan S, Hohmeyer A et al (2016) SWI/SNF regulates a transcriptional program that induces senescence to prevent liver cancer. Genes Dev 30(19):2187–2198. gad.286112.116 [pii]CrossRefGoogle Scholar
  20. 20.
    Bancroft JD, Gamble M (2008) Theory and practice of histological techniques, 6th edn. Churchill Livingstone, EdinburghGoogle Scholar
  21. 21.
    Schlageter M, Terracciano LM, D’Angelo S et al (2014) Histopathology of hepatocellular carcinoma. World J Gastroenterol 20(43):15955–15964. Scholar
  22. 22.
    Naas T, Ghorbani M, Alvarez-Maya I et al (2005) Characterization of liver histopathology in a transgenic mouse model expressing genotype 1a hepatitis C virus core and envelope proteins 1 and 2. J Gen Virol 86(Pt 8):2185–2196. 86/8/2185 [pii]CrossRefGoogle Scholar
  23. 23.
    Brown RW, Chirala R (1995) Utility of microwave-citrate antigen retrieval in diagnostic immunohistochemistry. Mod Pathol 8(5):515–520PubMedGoogle Scholar
  24. 24.
    Shafizadeh N, Ferrell LD, Kakar S (2008) Utility and limitations of glypican-3 expression for the diagnosis of hepatocellular carcinoma at both ends of the differentiation spectrum. Mod Pathol 21(8):1011–1018. Scholar
  25. 25.
    Luo Y, Ren F, Liu Y et al (2015) Clinicopathological and prognostic significance of high Ki-67 labeling index in hepatocellular carcinoma patients: a meta-analysis. Int J Clin Exp Med 8(7):10235–10247PubMedPubMedCentralGoogle Scholar
  26. 26.
    Langford DJ, Bailey AL, Chanda ML et al (2010) Coding of facial expressions of pain in the laboratory mouse. Nat Methods 7(6):447–449. Scholar
  27. 27.
    Paljarvi L, Garcia JH, Kalimo H (1979) The efficiency of aldehyde fixation for electron microscopy: stabilization of rat brain tissue to withstand osmotic stress. Histochem J 11(3):267–276.

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.MRC London Institute of Medical Sciences, Hammersmith Hospital CampusLondonUK
  2. 2.Institute of Clinical SciencesFaculty of Medicine, Imperial College LondonLondonUK

Personalised recommendations