Advertisement

Kupffer Cell Characterization by Mass Cytometry

Protocol
  • 586 Downloads
Part of the Methods in Molecular Biology book series (MIMB, volume 2164)

Abstract

Kupffer cells are the liver-resident macrophages lining the sinusoids and are mostly known for their role of scavengers, as crucial keepers of organ integrity. But due to the many fundamental functions of the liver notably linked to detoxication, metabolism, protein synthesis, or immunology, Kupffer cells are exposed to a dynamic environment and constantly adapt themselves by modulating their gene and protein expressions. In this context, the characterization of these cells at steady-state and upon challenges may be limited by the classical microscopy or flow cytometry which allow for the use of only few selected markers. On the other end, transcriptomic approach, although being very powerful, can be costly and time-consuming. So mass cytometry offers a good compromise, allowing for the monitoring of a representative set of markers (up to 40) in a simple experiment. Herein, we describe a straightforward experimental and analysis workflow for Kupffer cell characterization by mass cytometry.

Key words

Immunology Mass cytometry CyTOF Macrophages Kupffer cells 

References

  1. 1.
    Bandura DR, Baranov VI, Ornatsky OI, Antonov A, Kinach R, Lou X, Pavlov S, Vorobiev S, Dick JE, Tanner SD (2009) Mass cytometry: technique for real time single cell multitarget immunoassay based on inductively coupled plasma time-of-flight mass spectrometry. Anal Chem 81(16):6813–6822.  https://doi.org/10.1021/ac901049wCrossRefPubMedGoogle Scholar
  2. 2.
    Lavin Y, Kobayashi S, Leader A, Amir ED, Elefant N, Bigenwald C, Remark R, Sweeney R, Becker CD, Levine JH, Meinhof K, Chow A, Kim-Shulze S, Wolf A, Medaglia C, Li H, Rytlewski JA, Emerson RO, Solovyov A, Greenbaum BD, Sanders C, Vignali M, Beasley MB, Flores R, Gnjatic S, Pe’er D, Rahman A, Amit I, Merad M (2017) Innate immune landscape in early lung adenocarcinoma by paired single-cell analyses. Cell 169(4):750–765.e717.  https://doi.org/10.1016/j.cell.2017.04.014CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Simoni Y, Fehlings M, Kloverpris HN, McGovern N, Koo SL, Loh CY, Lim S, Kurioka A, Fergusson JR, Tang CL, Kam MH, Dennis K, Lim TKH, Fui ACY, Hoong CW, Chan JKY, Curotto de Lafaille M, Narayanan S, Baig S, Shabeer M, Toh SES, Tan HKK, Anicete R, Tan EH, Takano A, Klenerman P, Leslie A, Tan DSW, Tan IB, Ginhoux F, Newell EW (2017) Human innate lymphoid cell subsets possess tissue-type based heterogeneity in phenotype and frequency. Immunity 46(1):148–161.  https://doi.org/10.1016/j.immuni.2016.11.005CrossRefPubMedGoogle Scholar
  4. 4.
    Guilliams M, Scott CL (2017) Does niche competition determine the origin of tissue-resident macrophages? Nat Rev Immunol 17(7):451–460.  https://doi.org/10.1038/nri.2017.42CrossRefPubMedGoogle Scholar
  5. 5.
    Bleriot C, Ginhoux F (2019) Understanding the heterogeneity of resident liver macrophages. Front Immunol 10:2694.  https://doi.org/10.3389/fimmu.2019.02694
  6. 6.
    Sanyal A, Boyer T, Terrault N, Lindor K (2017) Zakim and Boyer’s hepatology. A textbook of liver disease, 7th edn. ElsevierGoogle Scholar
  7. 7.
    Halpern KB, Shenhav R, Matcovitch-Natan O, Toth B, Lemze D, Golan M, Massasa EE, Baydatch S, Landen S, Moor AE, Brandis A, Giladi A, Avihail AS, David E, Amit I, Itzkovitz S (2017) Single-cell spatial reconstruction reveals global division of labour in the mammalian liver. Nature 542(7641):352–356.  https://doi.org/10.1038/nature21065CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Sumatoh HR, Teng KW, Cheng Y, Newell EW (2017) Optimization of mass cytometry sample cryopreservation after staining. Cytometry A 91(1):48–61.  https://doi.org/10.1002/cyto.a.23014CrossRefPubMedGoogle Scholar
  9. 9.
    Leipold MD, Maecker HT (2012) Mass cytometry: protocol for daily tuning and running cell samples on a CyTOF mass cytometer. J Vis Exp 69:e4398.  https://doi.org/10.3791/4398CrossRefGoogle Scholar
  10. 10.
    VanderMaaten L, Hinton G (2008) Visualizing data using t-SNE. J Mach Learn Res 9:2579–2605Google Scholar
  11. 11.
    Becht E, McInnes L, Healy J, Dutertre CA, Kwok IWH, Ng LG, Ginhoux F, Newell EW (2019) Dimensionality reduction for visualizing single-cell data using UMAP. Nat Biotechnol.  https://doi.org/10.1038/nbt.4314
  12. 12.
    Chen H, Lau MC, Wong MT, Newell EW, Poidinger M, Chen J (2016) Cytofkit: a bioconductor package for an integrated mass cytometry data analysis pipeline. PLoS Comput Biol 12(9):e1005112.  https://doi.org/10.1371/journal.pcbi.1005112CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Han G, Spitzer MH, Bendall SC, Fantl WJ, Nolan GP (2018) Metal-isotope-tagged monoclonal antibodies for high-dimensional mass cytometry. Nat Protoc 13(10):2121–2148.  https://doi.org/10.1038/s41596-018-0016-7CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Lai L, Ong R, Li J, Albani S (2015) A CD45-based barcoding approach to multiplex mass-cytometry (CyTOF). Cytometry A 87(4):369–374.  https://doi.org/10.1002/cyto.a.22640CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Hartmann FJ, Simonds EF, Bendall SC (2018) A universal live cell barcoding-platform for multiplexed human single cell analysis. Sci Rep 8(1):10770.  https://doi.org/10.1038/s41598-018-28791-2CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A∗STAR)SingaporeSingapore
  2. 2.Vaccine and Infectious Disease DivisionFred Hutchinson Cancer Research CenterSeattleUSA

Personalised recommendations