Skip to main content

Nucleotide-Dependent Dimerization and Conformational Switching of Atlastin

  • Protocol
  • First Online:
Dynamin Superfamily GTPases

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2159))

Abstract

A common feature of dynamin-related proteins (DRPs) is their use of guanosine triphosphate (GTP) to control protein dynamics. In the case of the endoplasmic- reticulum- (ER)-resident membrane protein atlastin (ATL), GTP binding and hydrolysis result in membrane fusion of ER tubules and the generation of a branched ER network. In this chapter, we describe two independent methods for dissecting the mechanism underlying nucleotide-dependent quaternary structure and conformational changes of ATL, focusing on size-exclusion chromatography coupled with multi-angle light scattering (SEC–MALS) and Förster resonance energy transfer (FRET), respectively. The high temporal resolution of the FRET-based assays enables the ordering of the molecular events identified in structural and equilibrium-based SEC–MALS studies. In combination, these complementary methods report on the oligomeric states of a system at equilibrium and timing of key steps along the enzyme’s catalytic cycle. These methods are broadly applicable to proteins that undergo ligand-induced dimerization and/or conformational changes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Praefcke GJ, McMahon HT (2004) The dynamin superfamily: universal membrane tubulation and fission molecules? Nat Rev Mol Cell Biol 5(2):133–147

    Article  CAS  PubMed  Google Scholar 

  2. Zhu PP, Patterson A, Lavoie B, Stadler J, Shoeb M, Patel R, Blackstone C (2003) Cellular localization, oligomerization, and membrane association of the hereditary spastic paraplegia 3A (SPG3A) protein atlastin. J Biol Chem 278(49):49063–49071

    Article  CAS  PubMed  Google Scholar 

  3. Hu J, Shibata Y, Zhu PP, Voss C, Rismanchi N, Prinz WA, Rapoport TA, Blackstone C (2009) A class of dynamin-like GTPases involved in the generation of the tubular ER network. Cell 138(3):549–561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Orso G, Pendin D, Liu S, Tosetto J, Moss TJ, Faust JE, Micaroni M, Egorova A, Martinuzzi A, McNew JA, Daga A (2009) Homotypic fusion of ER membranes requires the dynamin-like GTPase atlastin. Nature 460(7258):978–983

    Article  CAS  PubMed  Google Scholar 

  5. Rismanchi N, Soderblom C, Stadler J, Zhu PP, Blackstone C (2008) Atlastin GTPases are required for Golgi apparatus and ER morphogenesis. Hum Mol Genet 17(11):1591–1604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Fink JK (2006) Hereditary spastic paraplegia. Curr Neurol Neurosci Rep 6(1):65–76

    Article  CAS  PubMed  Google Scholar 

  7. Guelly C, Zhu PP, Leonardis L, Papic L, Zidar J, Schabhuttl M, Strohmaier H, Weis J, Strom TM, Baets J, Willems J, De Jonghe P, Reilly MM, Frohlich E, Hatz M, Trajanoski S, Pieber TR, Janecke AR, Blackstone C, Auer-Grumbach M (2011) Targeted high-throughput sequencing identifies mutations in atlastin-1 as a cause of hereditary sensory neuropathy type I. Am J Hum Genet 88(1):99–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Daumke O, Praefcke GJ (2016) Invited review: mechanisms of GTP hydrolysis and conformational transitions in the dynamin superfamily. Biopolymers 105(8):580–593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Antonny B, Burd C, De Camilli P, Chen E, Daumke O, Faelber K, Ford M, Frolov VA, Frost A, Hinshaw JE, Kirchhausen T, Kozlov MM, Lenz M, Low HH, McMahon H, Merrifield C, Pollard TD, Robinson PJ, Roux A, Schmid S (2016) Membrane fission by dynamin: what we know and what we need to know. EMBO J 35(21):2270–2284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hinshaw JE, Schmid SL (1995) Dynamin self-assembles into rings suggesting a mechanism for coated vesicle budding. Nature 374(6518):190–192

    Article  CAS  PubMed  Google Scholar 

  11. Takei K, McPherson PS, Schmid SL, De Camilli P (1995) Tubular membrane invaginations coated by dynamin rings are induced by GTP-gamma S in nerve terminals. Nature 374(6518):186–190

    Article  CAS  PubMed  Google Scholar 

  12. Chappie JS, Mears JA, Fang S, Leonard M, Schmid SL, Milligan RA, Hinshaw JE, Dyda F (2011) A pseudoatomic model of the dynamin polymer identifies a hydrolysis-dependent powerstroke. Cell 147(1):209–222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ford MG, Jenni S, Nunnari J (2011) The crystal structure of dynamin. Nature 477(7366):561–566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Marks B, Stowell MH, Vallis Y, Mills IG, Gibson A, Hopkins CR, McMahon HT (2001) GTPase activity of dynamin and resulting conformation change are essential for endocytosis. Nature 410(6825):231–235

    Article  CAS  PubMed  Google Scholar 

  15. Ramachandran R, Schmid SL (2008) Real-time detection reveals that effectors couple dynamin’s GTP-dependent conformational changes to the membrane. EMBO J 27(1):27–37

    Article  CAS  PubMed  Google Scholar 

  16. Sweitzer SM, Hinshaw JE (1998) Dynamin undergoes a GTP-dependent conformational change causing vesiculation. Cell 93(6):1021–1029

    Article  CAS  PubMed  Google Scholar 

  17. Mears JA, Lackner LL, Fang S, Ingerman E, Nunnari J, Hinshaw JE (2011) Conformational changes in Dnm1 support a contractile mechanism for mitochondrial fission. Nat Struct Mol Biol 18(1):20–26

    Article  CAS  PubMed  Google Scholar 

  18. Gasper R, Meyer S, Gotthardt K, Sirajuddin M, Wittinghofer A (2009) It takes two to tango: regulation of G proteins by dimerization. Nat Rev Mol Cell Biol 10(6):423–429

    Article  CAS  PubMed  Google Scholar 

  19. Prakash B, Praefcke GJ, Renault L, Wittinghofer A, Herrmann C (2000) Structure of human guanylate-binding protein 1 representing a unique class of GTP-binding proteins. Nature 403(6769):567–571

    Article  CAS  PubMed  Google Scholar 

  20. Prakash B, Renault L, Praefcke GJ, Herrmann C, Wittinghofer A (2000) Triphosphate structure of guanylate-binding protein 1 and implications for nucleotide binding and GTPase mechanism. EMBO J 19(17):4555–4564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chappie JS, Acharya S, Leonard M, Schmid SL, Dyda F (2010) G domain dimerization controls dynamin’s assembly-stimulated GTPase activity. Nature 465(7297):435–440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hoppins S, Nunnari J (2009) The molecular mechanism of mitochondrial fusion. Biochim Biophys Acta 1793(1):20–26

    Article  CAS  PubMed  Google Scholar 

  23. McNew JA, Sondermann H, Lee T, Stern M, Brandizzi F (2013) GTP-dependent membrane fusion. Annu Rev Cell Dev Biol 29:529–550

    Article  CAS  PubMed  Google Scholar 

  24. Cao YL, Meng S, Chen Y, Feng JX, Gu DD, Yu B, Li YJ, Yang JY, Liao S, Chan DC, Gao S (2017) MFN1 structures reveal nucleotide-triggered dimerization critical for mitochondrial fusion. Nature 542(7641):372–376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Qi Y, Yan L, Yu C, Guo X, Zhou X, Hu X, Huang X, Rao Z, Lou Z, Hu J (2016) Structures of human mitofusin 1 provide insight into mitochondrial tethering. J Cell Biol 215(5):621–629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yan L, Qi Y, Huang X, Yu C, Lan L, Guo X, Rao Z, Hu J, Lou Z (2018) Structural basis for GTP hydrolysis and conformational change of MFN1 in mediating membrane fusion. Nat Struct Mol Biol 25(3):233–243

    Article  CAS  PubMed  Google Scholar 

  27. Yan L, Sun S, Wang W, Shi J, Hu X, Wang S, Su D, Rao Z, Hu J, Lou Z (2015) Structures of the yeast dynamin-like GTPase Sey1p provide insight into homotypic ER fusion. J Cell Biol 210(6):961–972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bian X, Klemm RW, Liu TY, Zhang M, Sun S, Sui X, Liu X, Rapoport TA, Hu J (2011) Structures of the atlastin GTPase provide insight into homotypic fusion of endoplasmic reticulum membranes. Proc Natl Acad Sci U S A 108(10):3976–3981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Byrnes LJ, Singh A, Szeto K, Benvin NM, O’Donnell JP, Zipfel WR, Sondermann H (2013) Structural basis for conformational switching and GTP loading of the large G protein atlastin. EMBO J 32(3):369–384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Byrnes LJ, Sondermann H (2011) Structural basis for the nucleotide-dependent dimerization of the large G protein atlastin-1/SPG3A. Proc Natl Acad Sci U S A 108(6):2216–2221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. O’Donnell JP, Cooley RB, Kelly CM, Miller K, Andersen OS, Rusinova R, Sondermann H (2017) Timing and reset mechanism of GTP hydrolysis-driven conformational changes of Atlastin. Structure 25(7):997–1010

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Winsor J, Hackney DD, Lee TH (2017) The crossover conformational shift of the GTPase atlastin provides the energy driving ER fusion. J Cell Biol 216(5):1321–1335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Moss TJ, Andreazza C, Verma A, Daga A, McNew JA (2011) Membrane fusion by the GTPase atlastin requires a conserved C-terminal cytoplasmic tail and dimerization through the middle domain. Proc Natl Acad Sci U S A 108(27):11133–11138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Liu TY, Bian X, Romano FB, Shemesh T, Rapoport TA, Hu J (2015) Cis and trans interactions between atlastin molecules during membrane fusion. Proc Natl Acad Sci U S A 112(15):E1851–E1860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Liu TY, Bian X, Sun S, Hu X, Klemm RW, Prinz WA, Rapoport TA, Hu J (2012) Lipid interaction of the C terminus and association of the transmembrane segments facilitate atlastin-mediated homotypic endoplasmic reticulum fusion. Proc Natl Acad Sci U S A 109(32):E2146–E2154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Faust JE, Desai T, Verma A, Ulengin I, Sun TL, Moss TJ, Betancourt-Solis MA, Huang HW, Lee T, McNew JA (2015) The Atlastin C-terminal tail is an amphipathic helix that perturbs the bilayer structure during endoplasmic reticulum homotypic fusion. J Biol Chem 290(8):4772–4783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bigay J, Deterre P, Pfister C, Chabre M (1987) Fluoride complexes of aluminium or beryllium act on G-proteins as reversibly bound analogues of the gamma phosphate of GTP. EMBO J 6(10):2907–2913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hoffman GR, Nassar N, Oswald RE, Cerione RA (1998) Fluoride activation of the Rho family GTP-binding protein Cdc42Hs. J Biol Chem 273(8):4392–4399

    Article  CAS  PubMed  Google Scholar 

  39. Aoki K, Kamioka Y, Matsuda M (2013) Fluorescence resonance energy transfer imaging of cell signaling from in vitro to in vivo: basis of biosensor construction, live imaging, and image processing. Develop Growth Differ 55(4):515–522

    Article  CAS  Google Scholar 

  40. Garg A, Kaur H, Raghava GP (2005) Real value prediction of solvent accessibility in proteins using multiple sequence alignment and secondary structure. Proteins 61(2):318–324

    Article  CAS  PubMed  Google Scholar 

  41. Pugalenthi G, Kandaswamy KK, Chou KC, Vivekanandan S, Kolatkar P (2012) RSARF: prediction of residue solvent accessibility from protein sequence using random forest method. Protein Pept Lett 19(1):50–56

    Article  CAS  PubMed  Google Scholar 

  42. Cooley RB, Sondermann H (2017) Probing protein-protein interactions with genetically encoded photoactivatable cross-linkers. Methods Mol Biol 1657:331–345

    Article  CAS  PubMed  Google Scholar 

  43. Liu CC, Schultz PG (2010) Adding new chemistries to the genetic code. Annu Rev Biochem 79:413–444

    Article  CAS  PubMed  Google Scholar 

  44. Elder AD, Domin A, Kaminski Schierle GS, Lindon C, Pines J, Esposito A, Kaminski CF (2009) A quantitative protocol for dynamic measurements of protein interactions by Förster resonance energy transfer-sensitized fluorescence emission. J R Soc Interface 6:S59–S81

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by the Spastic Paraplegia Foundation to H.S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Holger Sondermann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

O’Donnell, J.P., Kelly, C.M., Sondermann, H. (2020). Nucleotide-Dependent Dimerization and Conformational Switching of Atlastin. In: Ramachandran, R. (eds) Dynamin Superfamily GTPases. Methods in Molecular Biology, vol 2159. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0676-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0676-6_8

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0675-9

  • Online ISBN: 978-1-0716-0676-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics