Skip to main content

Integrating Optical and Electrochemical Approaches to Assess the Actions of Dynamin at the Fusion Pore

  • Protocol
  • First Online:
Book cover Dynamin Superfamily GTPases

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2159))

  • 667 Accesses

Abstract

Of the techniques currently available to monitor dense core granule exocytosis in adrenal chromaffin cells, two have proven particularly useful: carbon-fiber amperometry and total internal reflection fluorescence (TIRF) microscopy. Amperometry enables the detection of oxidizable catecholamines escaping a fusion pore with millisecond time resolution. TIRF microscopy, and its variant polarized-TIRF (pTIRF) microscopy, provides information on the characteristics of fusion pores at temporally later stages. Used in conjunction, amperometry and TIRF microscopy allow an investigator to follow the fate of a fusion pore from its formation to expansion or reclosure. The properties of fusion pores, including their structure and dynamics, have been shown by multiple groups to be modified by the dynamin GTPase (Dyn1). In this chapter, we describe how amperometry and TIRF microscopy enable insights into dynamin-dependent effects on exocytosis in primary cultures of bovine adrenal chromaffin cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Perrais D, Kleppe IC, Taraska JW, Almers W (2004) Recapture after exocytosis causes differential retention of protein in granules of bovine chromaffin cells. J Physiol 560(2):413–428

    Article  CAS  Google Scholar 

  2. Taraska JW, Almers W (2004) Bilayers merge even when exocytosis is transient. Proc Natl Acad Sci U S A 101:8780–8785

    Article  CAS  Google Scholar 

  3. Taraska JW, Perrais D, Ohara-Imaizumi M, Nagamatsu S, Almers W (2003) Secretory granules are recaptured largely intact after stimulated exocytosis in cultured endocrine cells. Proc Natl Acad Sci U S A 100:2070–2075

    Article  CAS  Google Scholar 

  4. Fulop T, Radabaugh S, Smith C (2005) Activity-dependent differential transmitter release in mouse adrenal chromaffin cells. J Neurosci 25(32):7324–7332

    Article  CAS  Google Scholar 

  5. Anantharam A, Bittner MA, Aikman RL, Stuenkel EL, Schmid SL, Axelrod D, Holz RW (2011) A new role for the dynamin GTPase in the regulation of fusion pore expansion. Mol Biol Cell 22(11):1907–1918. https://doi.org/10.1091/mbc.E11-02-0101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Tsuboi T, McMahon HT, Rutter GA (2004) Mechanisms of dense core vesicle recapture following “kiss and run” (“cavicapture”) exocytosis in insulin-secreting cells. J Biol Chem 279(45):47115–47124

    Article  CAS  Google Scholar 

  7. Fulop T, Doreian B, Smith C (2008) Dynamin I plays dual roles in the activity-dependent shift in exocytic mode in mouse adrenal chromaffin cells. Arch Biochem Biophys 477(1):146–154

    Article  CAS  Google Scholar 

  8. Jaiswal JK, Rivera VM, Simon SM (2009) Exocytosis of post-Golgi vesicles is regulated by components of the endocytic machinery. Cell 137(7):1308–1319. https://doi.org/10.1016/j.cell.2009.04.064

    Article  PubMed  PubMed Central  Google Scholar 

  9. Shin W, Ge L, Arpino G, Villarreal SA, Hamid E, Liu H, Zhao WD, Wen PJ, Chiang HC, Wu LG (2018) Visualization of membrane pore in live cells reveals a dynamic-pore theory governing fusion and endocytosis. Cell 173(4):934–945.e912. https://doi.org/10.1016/j.cell.2018.02.062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wightman RM, Schroeder TJ, Finnegan JM, Ciolkowski EL, Pihel K (1995) Time course of release of catecholamines from individual vesicles during exocytosis at adrenal medullary cells. Biophys J 68(1):383–390

    Article  CAS  Google Scholar 

  11. Schroeder TJ, Jankowski JA, Kawagoe KT, Wightman RM (1992) Analysis of difusional broadening of vesicular packets of catecholamines release from biological cells during exocytosis. Anal Chem 64:3077–3083

    Article  CAS  Google Scholar 

  12. Wightman RM, Jankowski JA, Kennedy RT, Kawagoe KT, Schroeder TJ, Leszczyszyn DJ, Near JA, Diliberto EJ Jr, Viveros OH (1991) Temporally resolved catecholamine spikes correspond to single vesicle release from individual chromaffin cells. Proc Natl Acad Sci U S A 88:10754–10758

    Article  CAS  Google Scholar 

  13. Zhou Z, Misler S, Chow RH (1996) Rapid fluctuations in transmitter release from single vesicles in bovine adrenal chromaffin cells. Biophys J 70(3):1543–1552. https://doi.org/10.1016/S0006-3495(96)79718-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chow RH, von Ruden L, Neher E (1992) Delay in vesicle fusion revealed by electrochemical monitoring of single secretory events in adrenal chromaffin cells. Nature 356(6364):60–63. https://doi.org/10.1038/356060a0

    Article  CAS  PubMed  Google Scholar 

  15. Steyer JA, Horstman H, Almers W (1997) Transport, docking and exocytosis of single secretory granules in live chromaffin cells. Nature 388:474–478

    Article  CAS  Google Scholar 

  16. Allersma MW, Wang L, Axelrod D, Holz RW (2004) Visualization of regulated exocytosis with a granule-membrane probe using total internal reflection microscopy. Mol Biol Cell 15:4658–4668

    Article  CAS  Google Scholar 

  17. Anantharam A, Onoa B, Edwards RH, Holz RW, Axelrod D (2010) Localized topological changes of the plasma membrane upon exocytosis visualized by polarized TIRFM. J Cell Biol 188(3):415–428. https://doi.org/10.1083/jcb.200908010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Passmore DR, Rao T, Anantharam A (2014) Real-time investigation of plasma membrane deformation and fusion pore expansion using polarized total internal reflection fluorescence microscopy. Methods Mol Biol 1174:263–273. https://doi.org/10.1007/978-1-4939-0944-5_18

    Article  CAS  PubMed  Google Scholar 

  19. Passmore DR, Rao TC, Peleman AR, Anantharam A (2014) Imaging plasma membrane deformations with pTIRFM. J Vis Exp 86. https://doi.org/10.3791/51334

  20. Wick PW, Senter RA, Parsels LA, Holz RW (1993) Transient transfection studies of secretion in bovine chromaffin cells and PC12 cells: generation of kainate-sensitive chromaffin cells. J Biol Chem 268:10983–10989

    CAS  PubMed  Google Scholar 

  21. Mosharov EV, Sulzer D (2005) Analysis of exocytotic events recorded by amperometry. Nat Methods 2(9):651–658. https://doi.org/10.1038/nmeth782

    Article  CAS  PubMed  Google Scholar 

  22. Anantharam A, Axelrod D, Holz RW (2012) Real-time imaging of plasma membrane deformations reveals pre-fusion membrane curvature changes and a role for dynamin in the regulation of fusion pore expansion. J Neurochem 122(4):661–671. https://doi.org/10.1111/j.1471-4159.2012.07816.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Noah Schenk and Dr. Mounir Bendahmane for careful reading of this manuscript. We acknowledge NIH grant GM111997 for funding support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arun Anantharam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Smith, K.A., Prantzalos, E.R., Anantharam, A. (2020). Integrating Optical and Electrochemical Approaches to Assess the Actions of Dynamin at the Fusion Pore. In: Ramachandran, R. (eds) Dynamin Superfamily GTPases. Methods in Molecular Biology, vol 2159. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0676-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0676-6_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0675-9

  • Online ISBN: 978-1-0716-0676-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics