Skip to main content

Internally Controlled Methods to Quantify Pollen Tube Growth and Penetration Defects in Arabidopsis thaliana

  • Protocol
  • First Online:
Pollen and Pollen Tube Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2160))

  • 1182 Accesses

Abstract

Double-fertilization in angiosperms requires precise communication between the male gametophyte (pollen), the female tissues, and the associated female gametophyte (embryo sac) to facilitate efficient fertilization. Numerous small molecules, proteins, and peptides have been shown to impact double-fertilization through the disruption of pollen germination, pollen tube growth, pollen tube guidance, or pollen tube penetration of the female tissues. The genetic basis of signaling events that lead to successful double-fertilization has been greatly facilitated by studies in the model organism Arabidopsis thaliana, which possesses a relatively simple reproductive physiology and a widely available T-DNA mutant seed collection. In this chapter, we detail methods for determining the effects of single gene loss-of-function mutations on pollen behavior through the creation of an internally controlled fluorescent hemizygous complement line. By transforming a single copy of the disrupted gene back into the homozygous mutant background, a precise endogenous control is generated due to the fact that pollen containing equal ratios of mutant and complemented pollen can be collected from a single flower. Using this experimental design, we describe multiple assays that can be performed in series to assess mutant pollen defects in germination, pollen tube elongation rate, and pistil penetration, which can be easily quantified alongside a “near-wildtype” complemented counterpart.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Berger F, Hamamura Y, Ingouff M, Higashiyama T (2008) Double-fertilization – caught in the act. Trends Plant Sci 13(8):437–443

    Article  CAS  Google Scholar 

  2. Dresselhaus T, Franklin-Tong N (2013) Male-female cosstalk during pollen germination, tube growth and guidance, and double-fertilization. Mol Plant 6(4):1018–1036

    Article  CAS  Google Scholar 

  3. Leydon A, Weinreb C, Venable E, Reinders A et al (2017) The molecular dialog between flowering plant reproductive partners defined by SNP-informed RNA-sequencing. Plant Cell 29(5):984–1006

    Article  CAS  Google Scholar 

  4. Chae K, Lord EM (2011) Pollen tube growth and guidance: roles of small, secreted proteins. Ann Bot 108(4):627–636

    Article  CAS  Google Scholar 

  5. Takeuchi H, Higashiyama T (2016) Tip-localized receptors control pollen tube growth and LURE sensing in Arabidopsis. Nature 531(7593):245–245

    Article  CAS  Google Scholar 

  6. Bosch M, Cheung AY, Hepler PK (2005) Pectin methylesterase, a regulator of pollen tube growth. Plant Phys 138(3):1334–1346

    Article  CAS  Google Scholar 

  7. Guan Y, Guo J, Li H et al (2013) Signaling in pollen tube growth: crosstalk, feedback, and missing links. Mol Plant 6(4):1053–1064

    Article  CAS  Google Scholar 

  8. Huang Q, Dresselhaus T, Gu H et al (2015) Active role of small peptides in Arabidopsis reproduction: expression evidence. J Integr Plant Biol 57(6):518–521

    Article  CAS  Google Scholar 

  9. Li H-J, Meng JG, Yang WC (2018) Multilayered signaling pathways for pollen tube growth and guidance. Plant Reprod 31(1):31–41

    Article  CAS  Google Scholar 

  10. Cameron C, Geitmann A (2018) Cell mechanics of pollen tube growth. Curr Opin Genet Dev 51:11–17

    Article  CAS  Google Scholar 

  11. Palanivelu R, Tsukamoto T (2012) Pathfinding in angiosperm reproduction: pollen tube guidance by pistils ensures successful double-fertilization. Wiley Interdiscip Rev Dev Biol 1(1):96–113

    Article  CAS  Google Scholar 

  12. Azpiroz-Leehan R, Feldmann KA (1997) T-DNA insertion mutagenesis in Arabidopsis: going back and forth. Trends Genet 13(4):152–156

    Article  CAS  Google Scholar 

  13. Krysan PJ, Young JC, Sussman MR (1999) T-DNA as an insertional mutagen in Arabidopsis. Plant Cell 11(12):2283–2290

    Article  CAS  Google Scholar 

  14. Johnson MA, von Besser K, Zhou Q et al (2004) Arabidopsis hapless mutations define essential gametophytic functions. Genetics 168(2):971–982

    Article  CAS  Google Scholar 

  15. Beale KM, Johnson MA (2013) Speed dating, rejection, and finding the perfect mate: advice from flowering plants. Curr Opin Plant Biol 16(5):590–597

    Article  CAS  Google Scholar 

  16. Koornneef M, Meinke D (2010) The development of Arabidopsis as a model plant. Plant J 61(6):909–921

    Article  CAS  Google Scholar 

  17. Agudelo C, Packirisamy M, Geitmann A (2016) Influence of electric fields and conductivity on pollen tube growth assessed via electrical lab-on-chip. Sci Rep 6(1):19812

    Article  CAS  Google Scholar 

  18. Chebli Y, Geitmann A (2015) Live cell and immuno-labeling techniques to study gravitational effects on single plant cells. Methods Mol Biol 1309:209

    Article  Google Scholar 

  19. Palanivelu R, Brass L, Edlund AF et al (2003) Pollen tube growth and guidance is regulated by POP2, an Arabidopsis gene that controls GABA levels. Cell 114(1):47–59

    Article  CAS  Google Scholar 

  20. Higashiyama T, Yang W (2017) Gametophytic pollen tube guidance: attractant peptides, gametic controls, and receptors. Plant Physiol 173(1):112–121

    Article  CAS  Google Scholar 

  21. Boavida L, McCormick S (2007) Temperature as a determinant factor for increased and reproducible in vitro pollen germination in Arabidopsis thaliana. Plant J 52(3):570–582

    Article  CAS  Google Scholar 

  22. Rodriguez-Enriquez MJ, Mehdi S, Dickinson HG et al (2013) A novel method for efficient in vitro germination and tube growth of Arabidopsis thaliana pollen. New Phytol 197(2):668–679

    Article  CAS  Google Scholar 

  23. Clough S, Bent A (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16(6):735–743

    Article  CAS  Google Scholar 

  24. ImageJ (1997) U. S. National Institutes of Health, Bethesda, MD. http://imagej.nih.gov/ij/. Accessed 23 Apr 2019

  25. Smith DK, Jones DM, Lau JBR et al (2018) A putative protein O-fucosyltransferase facilitates pollen tube penetration through the stigma-style interface. Plant Physiol 17:2804–2818

    Article  Google Scholar 

  26. van der Veen JH, Wirtz P (1968) EMS-induced genic male sterility in Arabidopsis thaliana: a model selection experiment. Euphytica 17(3):371–377

    Article  Google Scholar 

  27. Nakagawa T, Suzuki T, Murata S et al (2007) Improved gateway binary vectors: high-performance vectors for creation of fusion constructs in transgenic analysis of plants. Biosci Biotechnol Biochem 71(8):2095–2100

    Article  CAS  Google Scholar 

  28. Wang L, Clarke LA, Eason RJ et al (2017) PCP-B class pollen coat proteins are key regulators of the hydration checkpoint in Arabidopsis thaliana pollen–stigma interactions. New Phytol 213(2):764–777

    Article  CAS  Google Scholar 

  29. Kuroiwa T, Higashiyama T, Kuroiwa H et al (2006) GENERATIVE CELL SPECIFIC 1 is essential for angiosperm fertilization. Nat Cell Biol 8:64–71

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by startup funds from the University of Nevada, Reno Department of Biochemistry and Molecular Biology to I.S.W. and a National Science Foundation graduate research fellowship to D.K.S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian S. Wallace .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Smith, D.K., Wallace, I.S. (2020). Internally Controlled Methods to Quantify Pollen Tube Growth and Penetration Defects in Arabidopsis thaliana. In: Geitmann, A. (eds) Pollen and Pollen Tube Biology. Methods in Molecular Biology, vol 2160. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0672-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0672-8_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0671-1

  • Online ISBN: 978-1-0716-0672-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics