Skip to main content

Workflow to Characterize Mutants with Reproductive Defects

  • Protocol
  • First Online:
Pollen and Pollen Tube Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2160))

Abstract

Reverse genetics approaches for characterizing phenotypes of mutants in a gene of interest (GOI) require thorough genotyping and phenotypic analysis. However, special challenges are encountered when a GOI is expressed in reproductive tissues: a variety of assays are required to characterize the phenotype and a mutant may show sporophytic and/or gametophytic defects in male and/or female reproductive tissues, which are structurally and functionally intertwined. Here, we present a streamlined workflow to characterize mutants with reproductive defects, primarily using Arabidopsis as a model, which can also be adapted to characterize mutants in other flowering plants. Procedures described here can be used to distinguish different kinds of reproductive defects and pinpoint the defective reproductive step(s) in a mutant. Although our procedures emphasize the characterization of mutants with male reproductive defects, they can nevertheless be used to identify female reproductive defects, as those defects could manifest alongside, and sometimes require, male reproductive tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Honys D, Reňák D, Twell D (2006) Male gametophyte development and function. In: Teixeira da Silva JA (ed) Floriculture, ornamental and plant biotechnology: advances and topical issues, vol 1. Global Science Books, London, pp 76–87

    Google Scholar 

  2. Sundaresan V, Alandete-Saez M (2010) Pattern formation in miniature: the female gametophyte of flowering plants. Development 137:179–189

    Article  CAS  PubMed  Google Scholar 

  3. Palanivelu R, Tsukamoto T (2012) Pathfinding in angiosperm reproduction: pollen tube guidance by pistils ensures successful double fertilization. Wiley Interdiscip Rev Dev Biol 1:96–113

    Article  CAS  PubMed  Google Scholar 

  4. Rutley N, Twell D (2015) A decade of pollen transcriptomics. Plant Reprod 28:73–89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Qin Y, Leydon AR, Manziello A, Pandey R, Mount D, Denic S, Vasic B, Johnson MA, Palanivelu R (2009) Penetration of the stigma and style elicits a novel transcriptome in pollen tubes, pointing to genes critical for growth in a pistil. PLoS Genet 5:e1000621

    Article  PubMed  PubMed Central  Google Scholar 

  6. Leydon AR, Weinreb C, Venable E, Reinders A, Ward JM, Johnson MA (2017) The molecular dialog between flowering plant reproductive partners defined by SNP-informed RNA-sequencing. Plant Cell 29:984–1006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Swanson R, Clark T, Preuss D (2005) Expression profiling of Arabidopsis stigma tissue identifies stigma-specific genes. Sex Plant Reprod 18:163–171

    Article  CAS  Google Scholar 

  8. Wuest SE, Vijverberg K, Schmidt A, Weiss M, Gheyselinck J, Lohr M, Wellmer F, Rahnenführer J, von Mering C, Grossniklaus U (2010) Arabidopsis female gametophyte gene expression map reveals similarities between plant and animal gametes. Curr Biol 20:506–512

    Article  CAS  PubMed  Google Scholar 

  9. Johnson MA, Kost B (2010) Pollen tube development. In: Hennig L., K­hler C. (eds) Plant Developmental Biology, Methods in Molecular Biology (Methods and Protocols), vol 655. Humana Press, Totowa, NJ, pp 155–176

    Google Scholar 

  10. Palanivelu R, Brass L, Edlund AF, Preuss D (2003) Pollen tube growth and guidance is regulated by POP2, an Arabidopsis gene that controls GABA levels. Cell 114:47–59

    Article  CAS  PubMed  Google Scholar 

  11. Mori T, Kuroiwa H, Higashiyama T, Kuroiwa T (2006) GENERATIVE CELL SPECIFIC 1 is essential for angiosperm fertilization. Nat Cell Biol 8:64–71

    Article  CAS  PubMed  Google Scholar 

  12. Johnson MA, Harper JF, Palanivelu R (2019) A fruitful journey: pollen tube navigation from germination to fertilization. Annu Rev Plant Biol 70:809–837

    Article  CAS  PubMed  Google Scholar 

  13. Kasahara RD, Maruyama D, Hamamura Y, Sakakibara T, Twell D, Higashiyama T (2012) Fertilization recovery after defective sperm cell release in Arabidopsis. Curr Biol 22:1084–1089

    Article  CAS  PubMed  Google Scholar 

  14. Beale KM, Leydon AR, Johnson MA (2012) Gamete fusion is required to block multiple pollen tubes from entering an Arabidopsis ovule. Curr Biol 22:1090–1094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hamamura Y, Saito C, Awai C, Kurihara D, Miyawaki A, Nakagawa T, Kanaoka MM, Sasaki N, Nakano A, Berger F et al (2011) Live-cell imaging reveals the dynamics of two sperm cells during double fertilization in Arabidopsis thaliana. Curr Biol 21:497–502

    Article  CAS  PubMed  Google Scholar 

  16. Palanivelu R, Johnson MA (2010) Functional genomics of pollen tube–pistil interactions in Arabidopsis. Biochem Soc Trans 38:593–597

    Article  CAS  PubMed  Google Scholar 

  17. Yuan J, Kessler SA (2019) A genome-wide association study reveals a novel regulator of ovule number and fertility in Arabidopsis thaliana. PLoS Genet 15:e1007934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Le BH, Cheng C, Bui AQ, Wagmaister JA, Henry KF, Pelletier J, Kwong L, Belmonte M, Kirkbride R, Horvath S et al (2010) Global analysis of gene activity during Arabidopsis seed development and identification of seed-specific transcription factors. Proc Natl Acad Sci 107:8063–8070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Goldberg RB, de Paiva G, Yadegari R (1994) Plant embryogenesis: zygote to seed. Science 266:605–614

    Article  CAS  PubMed  Google Scholar 

  20. Smyth DR, Bowman JL, Meyerowitz EM (1990) Early flower development in Arabidopsis. Plant Cell 2:755–767

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Grover JW, Kendall T, Baten A, Burgess D, Freeling M, King GJ, Mosher RA (2018) Maternal components of RNA-directed DNA methylation are required for seed development in Brassica rapa. Plant J 94:575–582

    Article  CAS  PubMed  Google Scholar 

  22. Pereira AM, Nobre MS, Pinto SC, Lopes AL, Costa ML, Masiero S, Coimbra S (2016) “Love is strong, and you’re so sweet”ω: JAGGER is essential for persistent synergid degeneration and polytubey block in Arabidopsis thaliana. Mol Plant. 9:601-614

    Google Scholar 

  23. Leydon AR, Beale KM, Woroniecka K, Castner E, Chen J, Horgan C, Palanivelu R, Johnson MA (2013) Three MYB transcription factors control pollen tube differentiation required for sperm release. Curr Biol 23:1209–1214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Liang Y, Tan Z-M, Zhu L, Niu Q-K, Zhou J-J, Li M, Chen L-Q, Zhang X-Q, Ye D (2013) MYB97, MYB101 and MYB120 function as male factors that control pollen tube-synergid interaction in Arabidopsis thaliana fertilization. PLoS Genet 9:e1003933

    Article  PubMed  PubMed Central  Google Scholar 

  25. Kessler SA, Shimosato-Asano H, Keinath NF, Wuest SE, Ingram G, Panstruga R, Grossniklaus U (2010) Conserved molecular components for pollen tube reception and fungal invasion. Science 330:968–971

    Article  CAS  PubMed  Google Scholar 

  26. Śnieżko R (2000) Fluorescence microscopy of aniline blue stained pistils. In: Dashek WV (ed) Methods in plant electron microscopy and cytochemistry. Totowa, NJ, Humana, pp 81–86

    Google Scholar 

Download references

Acknowledgements

J.A. Noble was supported by the following: IGERT Comparative Genomics Program at the University of Arizona (Award ID: 0654435); NSF Graduate Research Fellowship: Grant DGE-1143953; the Boynton Graduate Fellowship from the School of Plant Sciences, University of Arizona; and the University of Arizona Graduate College Office of Diversity and Inclusion. Additional support for this work was provided by an NSF grant to R. Palanivelu (IOS-1146090).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravishankar Palanivelu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Noble, J.A., Palanivelu, R. (2020). Workflow to Characterize Mutants with Reproductive Defects. In: Geitmann, A. (eds) Pollen and Pollen Tube Biology. Methods in Molecular Biology, vol 2160. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0672-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0672-8_8

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0671-1

  • Online ISBN: 978-1-0716-0672-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics