Skip to main content

Measuring Exocytosis Rate in Arabidopsis Pollen Tubes Using Corrected Fluorescence Recovery After Photoconversion (cFRAPc) Technique

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2160))

Abstract

Exocytosis is a fundamental process essential for many cellular functions by targeting signal peptides, proteins, and cell wall components to the plasma membrane (PM) or extracellular matrix. Conventional methods, such as FRAP, often underestimate the exocytosis rate of a specific molecule, because retrieval of the molecules from the PM by endocytosis can impact the measurement. To overcome this issue, we have previously established a novel method, corrected fluorescence recovery after photoconversion (cFRAPc), which allows us to accurately measure the exocytosis rate by monitoring both exocytosis-dependent and exocytosis-independent events. In this chapter, we provide detailed procedures for the cFRAPc method to measure the exocytosis rate of Arabidopsis receptor-like kinase PRK1 in pollen tubes. This method should be widely applicable to various cell types.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Chebli Y, Kaneda M, Zerzour R, Geitmann A (2012) The cell wall of the Arabidopsis pollen tube—spatial distribution, recycling, and network formation of polysaccharides. Plant Physiol 160(4):1940–1955. https://doi.org/10.1104/pp.112.199729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Grebnev G, Ntefidou M, Kost B (2017) Secretion and endocytosis in pollen tubes: models of tip growth in the spot light. Front Plant Sci 8:154. https://doi.org/10.3389/fpls.2017.00154

    Article  PubMed  PubMed Central  Google Scholar 

  3. Wang H, Zhuang X, Cai Y, Cheung AY, Jiang L (2013) Apical F-actin-regulated exocytic targeting of NtPPME1 is essential for construction and rigidity of the pollen tube cell wall. Plant J 76(3):367–379. https://doi.org/10.1111/tpj.12300

    Article  CAS  PubMed  Google Scholar 

  4. Cheung AY, Wu HM (2008) Structural and signaling networks for the polar cell growth machinery in pollen tubes. Annu Rev Plant Biol 59:547–572. https://doi.org/10.1146/annurev.arplant.59.032607.092921

    Article  CAS  PubMed  Google Scholar 

  5. Luo N, Yan A, Liu G, Guo J, Rong D, Kanaoka MM, Xiao Z, Xu G, Higashiyama T, Cui X, Yang Z (2017) Exocytosis-coordinated mechanisms for tip growth underlie pollen tube growth guidance. Nat Commun 8(1):1687. https://doi.org/10.1038/s41467-017-01452-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hwang JU, Vernoud V, Szumlanski A, Nielsen E, Yang Z (2008) A tip-localized RhoGAP controls cell polarity by globally inhibiting Rho GTPase at the cell apex. Curr Biol 18(24):1907–1916. https://doi.org/10.1016/j.cub.2008.11.057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ketelaar T, Galway ME, Mulder BM, Emons AM (2008) Rates of exocytosis and endocytosis in Arabidopsis root hairs and pollen tubes. J Microsc 231(2):265–273. https://doi.org/10.1111/j.1365-2818.2008.02031.x

    Article  CAS  PubMed  Google Scholar 

  8. Zonia L, Munnik T (2008) Vesicle trafficking dynamics and visualization of zones of exocytosis and endocytosis in tobacco pollen tubes. J Exp Bot 59(4):861–873. https://doi.org/10.1093/jxb/ern007

    Article  CAS  PubMed  Google Scholar 

  9. McKenna ST, Kunkel JG, Bosch M, Rounds CM, Vidali L, Winship LJ, Hepler PK (2009) Exocytosis precedes and predicts the increase in growth in oscillating pollen tubes. Plant Cell 21(10):3026–3040. https://doi.org/10.1105/tpc.109.069260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wang X, Teng Y, Wang Q, Li X, Sheng X, Zheng M, Samaj J, Baluska F, Lin J (2006) Imaging of dynamic secretory vesicles in living pollen tubes of Picea meyeri using evanescent wave microscopy. Plant Physiol 141(4):1591–1603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Parton RM, Fischer-Parton S, Watahiki MK, Trewavas AJ (2001) Dynamics of the apical vesicle accumulation and the rate of growth are related in individual pollen tubes. J Cell Sci 114(Pt 14):2685–2695

    CAS  PubMed  Google Scholar 

  12. Camacho L, Malho R (2003) Endo/exocytosis in the pollen tube apex is differentially regulated by Ca2+ and GTPases. J Exp Bot 54(380):83–92. https://doi.org/10.1093/jxb/54.380.83

    Article  CAS  PubMed  Google Scholar 

  13. Bove J, Vaillancourt B, Kroeger J, Hepler PK, Wiseman PW, Geitmann A (2008) Magnitude and direction of vesicle dynamics in growing pollen tubes using spatiotemporal image correlation spectroscopy and fluorescence recovery after photobleaching. Plant Physiol 147(4):1646–1658. https://doi.org/10.1104/pp.108.120212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lee YJ, Szumlanski A, Nielsen E, Yang Z (2008) Rho-GTPase-dependent filamentous actin dynamics coordinate vesicle targeting and exocytosis during tip growth. J Cell Biol 181(7):1155–1168. https://doi.org/10.1083/jcb.200801086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Moscatelli A, Idilli AI, Rodighiero S, Caccianiga M (2012) Inhibition of actin polymerisation by low concentration Latrunculin B affects endocytosis and alters exocytosis in shank and tip of tobacco pollen tubes. Plant Biol 14(5):770–782. https://doi.org/10.1111/j.1438-8677.2011.00547.x

    Article  CAS  PubMed  Google Scholar 

  16. Yan A, Yang Z (2012) FRAP-based analysis of Rho GTPase-dependent polar exocytosis in pollen tubes. Methods Mol Biol 827:393–401. https://doi.org/10.1007/978-1-61779-442-1_26

    Article  CAS  PubMed  Google Scholar 

  17. Parton RM, Fischer-Parton S, Trewavas AJ, Watahiki MK (2003) Pollen tubes exhibit regular periodic membrane trafficking events in the absence of apical extension. J Cell Sci 116(Pt 13):2707–2719. https://doi.org/10.1242/jcs.00468

    Article  CAS  PubMed  Google Scholar 

  18. Luo N, Yan A, Yang Z (2016) Measuring exocytosis rate using corrected fluorescence recovery after photoconversion. Traffic 17(5):554–564. https://doi.org/10.1111/tra.12380

    Article  CAS  PubMed  Google Scholar 

  19. Chudakov DM, Lukyanov S, Lukyanov KA (2007) Tracking intracellular protein movements using photoswitchable fluorescent proteins PS-CFP2 and Dendra2. Nat Protoc 2(8):2024–2032. https://doi.org/10.1038/nprot.2007.291

    Article  CAS  PubMed  Google Scholar 

  20. Chudakov DM, Lukyanov S, Lukyanov KA (2007) Using photoactivatable fluorescent protein Dendra2 to track protein movement. Biotechniques 42(5):553–557. https://doi.org/10.2144/000112470

    Article  CAS  PubMed  Google Scholar 

  21. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9(7):676–682. https://doi.org/10.1038/nmeth.2019

    Article  CAS  PubMed  Google Scholar 

  22. Klementieva NV, Lukyanov KA, Markina NM, Lukyanov SA, Zagaynova EV, Mishin AS (2016) Green-to-red primed conversion of Dendra2 using blue and red lasers. Chem Commun 52(89):13144–13146. https://doi.org/10.1039/c6cc05599k

    Article  CAS  Google Scholar 

  23. Mohr MA, Argast P, Pantazis P (2016) Labeling cellular structures in vivo using confined primed conversion of photoconvertible fluorescent proteins. Nat Protoc 11(12):2419–2431. https://doi.org/10.1038/nprot.2016.134

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work is supported by the U.S. National Institute of General Medical Sciences (GM100130).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenbiao Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Guo, J., Yang, Z. (2020). Measuring Exocytosis Rate in Arabidopsis Pollen Tubes Using Corrected Fluorescence Recovery After Photoconversion (cFRAPc) Technique. In: Geitmann, A. (eds) Pollen and Pollen Tube Biology. Methods in Molecular Biology, vol 2160. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0672-8_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0672-8_21

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0671-1

  • Online ISBN: 978-1-0716-0672-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics