Skip to main content

Cryo-Scanning Electron Microscopy to Study the Freezing Behavior of Plant Tissues

  • Protocol
  • First Online:
Plant Cold Acclimation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2156))

  • 801 Accesses

Abstract

A cryo-scanning electron microscope (cryo-SEM) is a valuable tool for observing bulk frozen samples to monitor freezing responses of plant tissues and cells. Here, the essential processes of a cryo-SEM to observe freezing behaviors of plant tissue cells are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Echlin P (1971) The examination of biological material at low temperatures. Scanning electron microscopy. IITRI, Chicago, pp 225–232

    Google Scholar 

  2. Nei T, Yotsumoto H, Hasegawa Y, Nagasawa Y (1973) Development of new cryo-unit attached to scanning electron microscope. J Electron Microsc 22:169–182

    Google Scholar 

  3. Sargent JA (1988) Low temperature scanning electron microscopy: advantages and application. Scanning Microsc 2:835–849

    CAS  PubMed  Google Scholar 

  4. Fujikawa S, Suzuki T, Ishikawa T et al (1988) Continuous observation of frozen biological materials with cryo-scanning electron microscope and freeze-replica by a new cryo-system. J Electron Microsc 37:315–322

    CAS  Google Scholar 

  5. McCully ME, Canny MJ, Huang CX (2009) Cryo-scanning electron microscopy (CSEM) in the advancement of functional plant biology: morphological and anatomical applications. Funct Plant Biol 36:97–124

    Google Scholar 

  6. Utsumi Y, Sano Y, Ohtani J et al (1996) Seasonal changes in the distribution of water in the outer growth rings of Fraxinus mandshurica var. Japonica: a study by cryo-scanning electron microscopy. IAWA J 17:113–124

    Google Scholar 

  7. Utsumi Y, Sano Y, Fujikawa S et al (1998) Visualization of cavitated vessels in winter and refilled vessels in spring in diffuse-porous trees by cryo-scanning electron microscopy. Plant Physiol 117:1463–1471

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Sano Y, Fujikawa S, Fukazawa K (1995) Detection and features of wetwood in Quercus mongolica var. grosseserrata. Trees 9:261–268

    Google Scholar 

  9. Johnson DM, Meinzer FC, Woodruff DR et al (2009) Leaf xylem embolism, detected acoustically and by cryo-SEM, corresponds to decreases in leaf hydraulic conductance in four evergreen species. Plant Cell Environ 32:828–836

    PubMed  Google Scholar 

  10. Firon N, Nepi M, Pacini E (2012) Water status and associated processes mark critical stages in pollen development and functioning. Ann Bot 109:1201–1213

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Umebayashi T, Morita T, Utsumi Y et al (2016) Spatial distribution of xylem embolism in the stems of Pinus thunbergii at the threshold of fatal drought stress. Tree Physiol 36:1210–1218

    PubMed  Google Scholar 

  12. Cochard H, Bodet C, Améglio T et al (2000) Cryo-scanning electron microscopy observations of vessel content during transpiration in walnut petioles. Facts or artifacts? Plant Physiol 124:1191–1202

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Nei T, Fujikawa S (1977) Freeze-drying process of biological specimens observed with a scanning electron microscope. J Microsc 111:137–142

    Google Scholar 

  14. Fujikawa S, Miura K (1986) Plasma membrane ultrastructural changes caused by mechanical stress in the formation of extracellular ice as a primary cause of slow freezing injury in fruit-bodies of basidiomycetes (Lyophyllum ulmarium (Fr.) Kuhner). Cryobiology 23:371–382

    Google Scholar 

  15. Fujikawa S (1990) Cryo-scanning electron microscope and freeze-replica study on the occurrence of slow freezing injury. J Electron Microsc 39:80–85

    Google Scholar 

  16. Pearce RS (1988) Extracellular ice and cell shape in frost-stressed cereal leaves: a low temperature scanning-electron-microscopy study. Planta 175:313–324

    CAS  PubMed  Google Scholar 

  17. Pearce RS, Ashworth EN (1992) Cell shape and localization of ice in leaves of overwintering wheat during frost stress in the field. Planta 188:324–331

    CAS  PubMed  Google Scholar 

  18. Nagao M, Arakawa K, Takezawa D et al (2008) Long- and short-term freezing induce different types of injury in Arabidopsis thaliana leaf cells. Planta 227:477–489

    CAS  PubMed  Google Scholar 

  19. Ball MC, Canny MJ, Cheng X et al (2004) Structural changes in acclimated and unacclimated leaves during freezing and thawing. Funct Plant Biol 31:29–40

    Google Scholar 

  20. Roden JS, Canny MJ, Huang CX et al (2009) Frost tolerance and ice formation in Pinus radiata needles: ice management by the endodermis and transfusion tissues. Funct Plant Biol 36:180–189

    Google Scholar 

  21. Endoh K, Fujikawa S, Arakawa K (2012) Freezing behavior of cells in evergreen needle leaves of fir (Abies sachalinensis). Cryobiol Cryotechnol 58:125–134

    Google Scholar 

  22. Ashworth EN, Pearce RS (2002) Extracellular freezing in leaves of freezing-sensitive species. Planta 214:798–805

    CAS  PubMed  Google Scholar 

  23. Yamada T, Kuroda K, Jitsuyama Y et al (2002) Roles of the plasma membrane and the cell wall in the responses of plant cells to freezing. Planta 215:770–778

    CAS  PubMed  Google Scholar 

  24. Ashworth EN, Echlin P, Pearce RS et al (1988) Ice formation and tissue response in apple twigs. Plant Cell Environ 11:703–710

    Google Scholar 

  25. Fujikawa S, Kuroda K, Ohtani J (1996) Seasonal changes in the low-temperature behaviour of xylem ray parenchyma cells in red osier dogwood (Cornus sericea L.) with respect to extracellular freezing and supercooling. Micron 27:181–191

    Google Scholar 

  26. Kuroda K, Ohtani J, Fujikawa S (1997) Supercooling of xylem ray parenchyma cells in tropical and subtropical hardwood species. Trees 12:97–106

    Google Scholar 

  27. Fujikawa S, Kuroda K, Ohtani J (1997) Seasonal changes in dehydration tolerance of xylem ray parenchyma cells of Stylax obassia twigs that survive freezing temperatures by deep supercooling. Protoplasma 197:34–44

    Google Scholar 

  28. Kuroda K, Ohtani J, Kubota M et al (1999) Seasonal changes in the freezing behavior of xylem ray parenchyma cells in four boreal hardwood species. Cryobiology 38:81–88

    CAS  PubMed  Google Scholar 

  29. Fujikawa S, Kuroda K, Jitsuyama Y et al (1999) Freezing behavior of xylem ray parenchyma cells in softwood species with differences in the organization of cell walls. Protoplasma 206:31–40

    Google Scholar 

  30. Fujikawa S, Kuroda K (2000) Cryo-scanning electron microscopic study on freezing behavior of xylem ray parenchyma cells in hardwood species. Micron 31:669–686

    CAS  PubMed  Google Scholar 

  31. Kuroda K, Kasuga J, Arakawa K et al (2003) Xylem ray parenchyma cells in boreal hardwood species respond to subfreezing temperatures by deep supercooling that is accompanied by incomplete desiccation. Plant Physiol 131:736–744

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Kasuga J, Arakawa K, Fujikawa S (2007) High accumulation of soluble sugars in deep supercooling Japanese white birch xylem parenchyma cells. New Phytol 174:569–579

    CAS  PubMed  Google Scholar 

  33. Kasuga J, Endoh K, Yoshiba M et al (2013) Roles of cell walls and intracellular contents in supercooling capability of xylem parenchyma cells of boreal trees. Physiol Plant 148:25–35

    CAS  PubMed  Google Scholar 

  34. Endoh K, Kasuga J, Arakawa K et al (2009) Cryo-scanning electron microscopic study on freezing behaviors of tissue cells in dormant buds of larch (Larix kaempferi). Cryobiology 59:214–222

    PubMed  Google Scholar 

  35. Endoh K, Kuwabara C, Arakawa K et al (2014) Consideration of the reasons why dormant buds of trees have evolved extraorgan freezing as an adaptation for winter survival. Environ Exp Bot 106:52–59

    Google Scholar 

  36. Fujikawa S (1991) Freeze-fracture techniques. In: Harris JR (ed) Electron microscopy in biology: a practical approach. IRL Press, Oxford, pp 173–201

    Google Scholar 

  37. Robards AW, Crosby P (1979) A comprehensive freezing, fracturing and coating system for low temperature scanning electron microscopy. Scanning Electron Microsc 2:325–343

    Google Scholar 

  38. Pawley J, Norton JT (1978) A chamber attached to the SEM for fracturing and coating frozen biological samples. J Microsc 112:169–182

    CAS  PubMed  Google Scholar 

  39. Bastacky J, Hook GR, Finch GL et al (1987) Low-temperature scanning electron microscopy of frozen hydrated mouse lung. Scanning 9:57–70

    Google Scholar 

  40. Fujikawa S, Suzuki T, Sakurai S (1990) Use of micromanipulator for continuous observation of frozen samples by cryo-scanning electron microscopy and freeze replicas. Scanning 12:99–106

    Google Scholar 

  41. Fujikawa S, Suzuki T, Ishikawa T et al (1988) Continuous observation of frozen biological materials with cryo-scanning electron microscope and freeze-replicas by a new cryo-system. J Electron Microsc 37:315–322

    CAS  Google Scholar 

  42. Muller M, Meister N, Moor H (1980) Freezing in a propane jet and its application in freeze-fracturing. Mikroskopie 36:129–140

    CAS  PubMed  Google Scholar 

  43. Bachmann L, Schmitt WW (1971) Improved cryofixation applicable to freeze etching. Proc Natl Acad Sci U S A 68:2149–2152

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Heuser JE, Reese TE, Dennis MJ et al (1979) Synaptic vesicle exocytosis captured by quick freezing and correlated with quantal transmitter release. J Cell Biol 81:275–300

    CAS  PubMed  Google Scholar 

  45. Moor H, Bellin G, Sandri C et al (1980) The influence of high pressure freezing on mammalian nerve tissue. Cell Tissue Res 209:201–216

    CAS  PubMed  Google Scholar 

  46. Umrath W (1983) Calculation of the freeze-drying time for electron-microscopical preparations. Mikroskopie 40:9–34

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

One of the authors (S.F.) sincerely appreciates the strong support by JEOL Co. Ltd. for improvement and development of a cryo-SEM since he started his studies using a cryo-SEM in 1974. The authors also appreciate the excellent works by Mr. K. Shinbori, Institute of Low Temperature Science, Hokkaido University, for making many apparatuses of a cryo-SEM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seizo Fujikawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Fujikawa, S., Endoh, K. (2020). Cryo-Scanning Electron Microscopy to Study the Freezing Behavior of Plant Tissues. In: Hincha, D., Zuther, E. (eds) Plant Cold Acclimation. Methods in Molecular Biology, vol 2156. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0660-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0660-5_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0659-9

  • Online ISBN: 978-1-0716-0660-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics