Skip to main content

Mapping of Quantitative Trait Loci (QTL) Associated with Plant Freezing Tolerance and Cold Acclimation

  • Protocol
  • First Online:
Plant Cold Acclimation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2156))

  • 707 Accesses

Abstract

Most agronomic traits are determined by quantitative trait loci (QTL) and exhibit continuous distribution in natural or especially built segregating populations. The genetic architecture and the hereditary characteristics of these traits are much more complicated than those of oligogenic traits and need adapted strategies for deciphering. The model plant Arabidopsis thaliana is widely studied for quantitative traits, especially via the utilization of genetic natural diversity. Here we describe a QTL-mapping protocol for analyzing freezing tolerance after cold acclimation in this species, based on its specific genetic tools. Nevertheless, this approach can be applied for the elucidation of complex traits in others species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zuther E, Lee YP, Erban A et al (2018) Natural variation in freezing tolerance and cold acclimation response in Arabidopsis thaliana and related species. Adv Exp Med Biol 1081:81–98

    Article  CAS  PubMed  Google Scholar 

  2. Liu Y, Dang P, Liu L et al (2019) Cold acclimation by the CBF-COR pathway in a changing climate: lessons from Arabidopsis thaliana. Plant Cell Rep 38:511–519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Pareek A, Khurana A, Sharma AK et al (2017) An overview of signalling regulons during cold stress tolerance in plants. Curr Genomics 18:498–511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Meissner M, Orsini E, Ruschhaupt M et al (2013) Mapping quantitative trait loci for freezing tolerance in a recombinant inbred line population of Arabidopsis thaliana accessions Tenela and C24 reveals REVEILLE1 as negative regulator of cold acclimation. Plant Cell Environ 36:1256–1267

    Article  CAS  PubMed  Google Scholar 

  5. Tayeh N, Bahrman N, Sellier H et al (2013) A tandem array of CBF/DREB1 genes is located in a major freezing tolerance QTL region on Medicago truncatula chromosome 6. BMC Genomics 14:814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Oakley CG, Savage L, Lotz S et al (2018) Genetic basis of photosynthetic responses to cold in two locally adapted populations of Arabidopsis thaliana. J Exp Bot 69:699–709

    Article  CAS  PubMed  Google Scholar 

  7. Zhang Z, Li J, Pan Y et al (2017) Natural variation in CTB4a enhances rice adaptation to cold habitats. Nat Commun 8:14788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jha UC, Bohra A, Jha R (2017) Breeding approaches and genomics technologies to increase crop yield under low-temperature stress. Plant Cell Rep 36:1–35

    Article  CAS  PubMed  Google Scholar 

  9. Li J, Pan Y, Guo H et al (2018) Fine mapping of QTL qCTB10-2 that confers cold tolerance at the booting stage in rice. Theor Appl Genet 131:157–166

    Article  CAS  PubMed  Google Scholar 

  10. Marchadier E, Hanemian M, Tisné S et al (2019) The complex genetic architecture of shoot growth natural variation in Arabidopsis thaliana. PLoS Genet 15:e1007954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Géry C, Zuther E, Schulz E et al (2011) Natural variation in the freezing tolerance of Arabidopsis thaliana: effects of RNAi-induced CBF depletion and QTL localisation vary among accessions. Plant Sci 180:12–23

    Article  PubMed  Google Scholar 

  12. Zuther E, Schulz E, Childs LH et al (2012) Clinal variation in the non-acclimated and cold-acclimated freezing tolerance of Arabidopsis thaliana accessions. Plant Cell Environ 35:1860–1878

    Article  CAS  PubMed  Google Scholar 

  13. Gehan MA, Park S, Gilmour SJ et al (2015) Natural variation in the C-repeat binding factor cold response pathway correlates with local adaptation of Arabidopsis ecotypes. Plant J 84:682–693

    Article  CAS  PubMed  Google Scholar 

  14. Kang J, Zhang H, Sun T et al (2013) Natural variation of C-repeat-binding factor (CBFs) genes is a major cause of divergence in freezing tolerance among a group of Arabidopsis thaliana populations along the Yangtze River in China. New Phytol 199:1069–1080

    Article  CAS  PubMed  Google Scholar 

  15. Whitlow TH, Bassuk NL, Ranney TG et al (1992) An improved method for using electrolyte leakage to assess membrane competence in plant tissues. Plant Physiol 98:198–205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Burr KE, Tinus RW, Wallner SJ et al (1990) Comparison of three cold hardiness tests for conifer seedlings. Tree Physiol 6:351–369

    Article  CAS  PubMed  Google Scholar 

  17. Lander ES, Green P, Abrahamson J et al (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181

    Article  CAS  PubMed  Google Scholar 

  18. Basten CJ, Weir BS, Zeng ZB (2000) QTL CARTOGRAPHER version 1.14. North Carolina State University, Raleigh, NC

    Google Scholar 

  19. Da Costa L et al (2012) Composite interval mapping and multiple interval mapping: procedures and guidelines for using windows QTL Cartographer. Methods Mol Biol 871:75–119

    Article  Google Scholar 

  20. Kosambi DD (1944) The estimation of map distances from recombinant values. Ann Eugenics 12:172–175

    Article  Google Scholar 

  21. Loudet O, Chaillou S, Camilleri C et al (2002) Bay x Shadara recombinant inbred line population: a powerful tool for the genetic dissection of complex traits in Arabidopsis. Theor Appl Genet 104:1173–1184

    Article  CAS  PubMed  Google Scholar 

  22. Simon M, Loudet O, Durand S et al (2008) Quantitative trait loci mapping in five new large recombinant inbred line populations of Arabidopsis thaliana genotyped with consensus single-nucleotide polymorphism markers. Genetics 178:2253–2264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Andaya VC, Mackill DJ (2003) Mapping of QTLs associated with cold tolerance during the vegetative stage in rice. J Exp Bot 54:2579–2585

    Article  CAS  PubMed  Google Scholar 

  24. Mugabe D, Coyne CJ, Piaskowski J et al (2019) Quantitative trait loci for cold tolerance in chickpea. Crop Sci 59:573–582

    Article  CAS  Google Scholar 

  25. McKhann HI, Gery C, Bérard A et al (2008) Natural variation in CBF gene sequence, gene expression and freezing tolerance in the Versailles core collection of Arabidopsis thaliana. BMC Plant Biol 8:105

    Article  PubMed  PubMed Central  Google Scholar 

  26. Monir MM, Khatun M, Mollah MNH (2018) β-composite interval mapping for robust QTL analysis. PLoS One 13:e0208234

    Article  PubMed  PubMed Central  Google Scholar 

  27. Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138:963–971

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Neto EC, Keller MP, Broman AF et al (2012) Quantile-based permutation thresholds for Quantitative Trait Loci hotspots. Genetics 191:1355–1365

    Article  PubMed  PubMed Central  Google Scholar 

  29. Krymann J, Mitchell-Olds T (2005) Epistasis and balanced polymorphism influencing complex trait variation. Nature 435:95–98

    Article  Google Scholar 

  30. Wolter F, Schindele P, Puchta H (2019) Plant breeding at the speed of light: the power of CRISPR/Cas to generate directed diversity at multiple sites. BMC Plant Biol 19:176

    Article  PubMed  PubMed Central  Google Scholar 

  31. Rothan C, Diouf I, Causse M (2019) Trait discovery and editing in tomato. Plant J 97:73–90

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evelyne Téoulé .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Téoulé, E., Géry, C. (2020). Mapping of Quantitative Trait Loci (QTL) Associated with Plant Freezing Tolerance and Cold Acclimation. In: Hincha, D., Zuther, E. (eds) Plant Cold Acclimation. Methods in Molecular Biology, vol 2156. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0660-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0660-5_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0659-9

  • Online ISBN: 978-1-0716-0660-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics