Skip to main content

Measuring Freezing Tolerance of Leaves and Rosettes: Electrolyte Leakage and Chlorophyll Fluorescence Assays

  • Protocol
  • First Online:
Plant Cold Acclimation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2156))

Abstract

Quantitative assessment of freezing tolerance is essential to unravel plant adaptations to cold temperatures. Not only the survival of whole plants, but also impairment of detached leaves or small rosettes after a freeze–thaw cycle can be used to accurately quantify plant freezing tolerance in terms of LT50 values. Here we describe two methods to determine the freezing tolerance of detached leaves or rosettes using a full or selected set of freezing temperatures and an additional method using chlorophyll fluorescence as a different physiological parameter. Firstly, we illustrate how to assess the integrity of (predominantly) the plasma membrane during freezing using an electrolyte leakage assay. Secondly, we provide a chlorophyll fluorescence imaging protocol to determine the freezing tolerance of the photosynthetic apparatus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Steponkus PL (1984) Role of the plasma membrane in freezing injury and cold acclimation. Annu Rev Plant Physiol 35:543–584

    Article  CAS  Google Scholar 

  2. Thalhammer A, Bryant G, Sulpice R et al (2014) Disordered cold regulated15 proteins protect chloroplast membranes during freezing through binding and folding, but do not stabilize chloroplast enzymes in vivo. Plant Physiol 166:190–201

    Article  Google Scholar 

  3. Rohde P, Hincha DK, Heyer AG (2004) Heterosis in the freezing tolerance of crosses between two Arabidopsis thaliana accessions (Columbia-0 and C24) that show differences in non-acclimated and acclimated freezing tolerance. Plant J 38:790–799

    Article  CAS  Google Scholar 

  4. Hannah MA, Wiese D, Freund S et al (2006) Natural genetic variation of freezing tolerance in Arabidopsis. Plant Physiol 142:98–112

    Article  CAS  Google Scholar 

  5. Korn M, Peterek S, Mock HP et al (2008) Heterosis in the freezing tolerance, and sugar and flavonoid contents of crosses between Arabidopsis thaliana accessions of widely varying freezing tolerance. Plant Cell Environ 31:813–827

    Article  CAS  Google Scholar 

  6. Zuther E, Schulz E, Childs LH et al (2012) Clinal variation in the non-acclimated and cold-acclimated freezing tolerance of Arabidopsis thaliana accessions. Plant Cell Environ 35:1860–1878

    Article  CAS  Google Scholar 

  7. Zuther E, Juszczak I, Lee YP et al (2015) Time-dependent deacclimation after cold acclimation in Arabidopsis thaliana accessions. Sci Rep 5:12199

    Article  CAS  Google Scholar 

  8. Le MQ, Pagter M, Hincha DK (2015) Global changes in gene expression, assayed by microarray hybridization and quantitative RT-PCR, during acclimation of three Arabidopsis thaliana accessions to sub-zero temperatures after cold acclimation. Plant Mol Biol 87:1–15

    Article  CAS  Google Scholar 

  9. Takahashi D, Gorka M, Erban A et al (2019) Both cold and sub-zero acclimation induce cell wall modification and changes in the extracellular proteome in Arabidopsis thaliana. Sci Rep 9:2289

    Article  Google Scholar 

  10. Lee YP, Babakov A, de Boer B et al (2012) Comparison of freezing tolerance, compatible solutes and polyamines in geographically diverse collections of Thellungiella sp. and Arabidopsis thaliana accessions. BMC Plant Biol 12:131

    Article  Google Scholar 

  11. Ristic Z, Ashworth EN (1993) Changes in leaf ultrastructure and carbohydrates in Arabidopsis thaliana L. (Heyn) cv. Columbia during rapid cold acclimation. Protoplasma 172:111–123

    Article  Google Scholar 

  12. Ehlert B, Hincha DK (2008) Chlorophyll fluorescence imaging accurately quantifies freezing damage and cold acclimation responses in Arabidopsis leaves. Plant Methods 4:12

    Article  Google Scholar 

  13. Krause GH, Grafflage S, Rumich-Bayer S et al (1988) Effects of freezing on plant mesophyll cells. Symp Soc Exp Biol 42:311–327

    CAS  PubMed  Google Scholar 

  14. Woo NS, Badger MR, Pogson BJ (2008) A rapid, non-invasive procedure for quantitative assessment of drought survival using chlorophyll fluorescence. Plant Methods 4:27

    Article  Google Scholar 

  15. Maxwell K, Johnson GN (2000) Chlorophyll fluorescence-a practical guide. J Exp Bot 51:659–668

    Article  CAS  Google Scholar 

  16. Lawson T, Vialet-Chabrand S (2018) Chlorophyll fluorescence imaging. Methods Mol Biol 1770:121–140

    Article  CAS  Google Scholar 

  17. Oxborough K (2004) Imaging of chlorophyll a fluorescence: theoretical and practical aspects of an emerging technique for the monitoring of photosynthetic performance. J Exp Bot 55:1195–1205

    Article  CAS  Google Scholar 

  18. Lichtenthaler HK, Miehé JA (1997) Fluorescence imaging as a diagnostic tool for plant stress. Trend Plant Sci 2:316–320

    Article  Google Scholar 

  19. McKhann HI, Gery C, Bérard A et al (2008) Natural variation in CBF gene sequence, gene expression and freezing tolerance in the Versailles core collection of Arabidopsis thaliana. BMC Plant Biol 8:105

    Article  Google Scholar 

  20. Zuther E, Schaarschmidt S, Fischer A et al (2019) Molecular signatures associated with increased freezing tolerance due to low temperature memory in Arabidopsis. Plant Cell Environ 42:854–873

    CAS  PubMed  Google Scholar 

  21. Ritz C, Streibig JC (2005) Bioassay analysis using R. J Stat Software 12:1–22

    Article  Google Scholar 

  22. Schreiber U, Bilger W (1987) Rapid assessment of stress effects on plant leaves by chlorophyll fluorescence measurements. In: Plant response to stress. Springer, Berlin, pp 27–53

    Google Scholar 

  23. Hincha DK, Pfüller U, Schmitt JM (1997) The concentration of cryoprotective lectins in mistletoe (Viscum album L.) leaves is correlated with leaf frost hardiness. Planta 203:140–144

    Article  CAS  Google Scholar 

  24. Hunt S (2003) Measurements of photosynthesis and respiration in plants. Physiol Plant 117:314–325

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ellen Zuther .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Thalhammer, A., Pagter, M., Hincha, D.K., Zuther, E. (2020). Measuring Freezing Tolerance of Leaves and Rosettes: Electrolyte Leakage and Chlorophyll Fluorescence Assays. In: Hincha, D., Zuther, E. (eds) Plant Cold Acclimation. Methods in Molecular Biology, vol 2156. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0660-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0660-5_2

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0659-9

  • Online ISBN: 978-1-0716-0660-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics