Skip to main content

Clinical Imaging of Cerebral Cavernous Malformations: Computed Tomography and Magnetic Resonance Imaging

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2152))

Abstract

This is a review of imaging techniques used to evaluate cerebral cavernous malformations (CCMs) and imaging findings associated with CCMs. This chapter includes discussion of computed tomography and magnetic resonance imaging sequences, appearance of CCMs and associated hemorrhage and key features to evaluate on imaging studies.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Akers A, Al-Shahi Salman R, A Awad I, Dahlem K, Flemming K, Hart B, Kim H, Jusue-Torres I, Kondziolka D, Lee C, Morrison L, Rigamonti D, Rebeiz T, Tournier-Lasserve E, Waggoner D, Whitehead K (2017) Synopsis of guidelines for the clinical management of cerebral cavernous malformations: consensus recommendations based on systematic literature review by the angioma alliance scientific advisory board clinical experts panel. Neurosurgery 80(5):665–680. https://doi.org/10.1093/neuros/nyx091

    Article  PubMed  PubMed Central  Google Scholar 

  2. Al-Shahi Salman R, Berg MJ, Morrison L, Awad IA, Angioma Alliance Scientific Advisory B (2008) Hemorrhage from cavernous malformations of the brain: definition and reporting standards. Angioma alliance scientific advisory board. Stroke 39(12):3222–3230. https://doi.org/10.1161/STROKEAHA.108.515544

    Article  PubMed  Google Scholar 

  3. Flemming KD, Graff-Radford J, Aakre J, Kantarci K, Lanzino G, Brown RD Jr, Mielke MM, Roberts RO, Kremers W, Knopman DS, Petersen RC, Jack CR Jr (2017) Population-based prevalence of cerebral cavernous malformations in older adults: mayo clinic study of aging. JAMA Neurol 74(7):801–805. https://doi.org/10.1001/jamaneurol.2017.0439

    Article  PubMed  PubMed Central  Google Scholar 

  4. Zabramski JM, Wascher TM, Spetzler RF, Johnson B, Golfinos J, Drayer BP, Brown B, Rigamonti D, Brown G (1994) The natural history of familial cavernous malformations: results of an ongoing study. J Neurosurg 80(3):422–432. https://doi.org/10.3171/jns.1994.80.3.0422

    Article  CAS  PubMed  Google Scholar 

  5. Expert Panel on Neurologic I, Salmela MB, Mortazavi S, Jagadeesan BD, Broderick DF, Burns J, Deshmukh TK, Harvey HB, Hoang J, Hunt CH, Kennedy TA, Khalessi AA, Mack W, Patel ND, Perlmutter JS, Policeni B, Schroeder JW, Setzen G, Whitehead MT, Cornelius RS, Corey AS (2017) ACR appropriateness criteria((R)) cerebrovascular disease. J Am Coll Radiol 14(5S):S34–S61. https://doi.org/10.1016/j.jacr.2017.01.051

    Article  Google Scholar 

  6. Golden M, Saeidi S, Liem B, Marchand E, Morrison L, Hart B (2015) Sensitivity of patients with familial cerebral cavernous malformations to therapeutic radiation. J Med Imaging Radiat Oncol 59(1):134–136. https://doi.org/10.1111/1754-9485.12269

    Article  PubMed  PubMed Central  Google Scholar 

  7. Nikoubashman O, Di Rocco F, Davagnanam I, Mankad K, Zerah M, Wiesmann M (2015) Prospective hemorrhage rates of cerebral cavernous malformations in children and adolescents based on MRI appearance. AJNR Am J Neuroradiol 36(11):2177–2183. https://doi.org/10.3174/ajnr.A4427

    Article  CAS  PubMed  Google Scholar 

  8. Haacke EM, Mittal S, Wu Z, Neelavalli J, Cheng YC (2009) Susceptibility-weighted imaging: technical aspects and clinical applications, part 1. AJNR Am J Neuroradiol 30(1):19–30. https://doi.org/10.3174/ajnr.A1400

    Article  CAS  PubMed  Google Scholar 

  9. Bradley WG Jr (1993) MR appearance of hemorrhage in the brain. Radiology 189(1):15–26. https://doi.org/10.1148/radiology.189.1.8372185

    Article  PubMed  Google Scholar 

  10. Golden MJ, Morrison LA, Kim H, Hart BL (2015) Increased number of white matter lesions in patients with familial cerebral cavernous malformations. AJNR Am J Neuroradiol 36(5):899–903. https://doi.org/10.3174/ajnr.A4200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. de Souza JM, Domingues RC, Cruz LC Jr, Domingues FS, Iasbeck T, Gasparetto EL (2008) Susceptibility-weighted imaging for the evaluation of patients with familial cerebral cavernous malformations: a comparison with t2-weighted fast spin-echo and gradient-echo sequences. AJNR Am J Neuroradiol 29(1):154–158. https://doi.org/10.3174/ajnr.A0748

    Article  PubMed  Google Scholar 

  12. de Champfleur NM, Langlois C, Ankenbrandt WJ, Le Bars E, Leroy MA, Duffau H, Bonafe A, Jaffe J, Awad IA, Labauge P (2011) Magnetic resonance imaging evaluation of cerebral cavernous malformations with susceptibility-weighted imaging. Neurosurgery 68(3):641–647.; discussion 647-648. https://doi.org/10.1227/NEU.0b013e31820773cf

    Article  PubMed  Google Scholar 

  13. Lehnhardt FG, von Smekal U, Ruckriem B, Stenzel W, Neveling M, Heiss WD, Jacobs AH (2005) Value of gradient-echo magnetic resonance imaging in the diagnosis of familial cerebral cavernous malformation. Arch Neurol 62(4):653–658. https://doi.org/10.1001/archneur.62.4.653

    Article  PubMed  Google Scholar 

  14. Petersen TA, Morrison LA, Schrader RM, Hart BL (2010) Familial versus sporadic cavernous malformations: differences in developmental venous anomaly association and lesion phenotype. AJNR Am J Neuroradiol 31(2):377–382. https://doi.org/10.3174/ajnr.A1822

    Article  CAS  PubMed  Google Scholar 

  15. Meng G, Bai C, Yu T, Wu Z, Liu X, Zhang J, Zhao J (2014) The association between cerebral developmental venous anomaly and concomitant cavernous malformation: an observational study using magnetic resonance imaging. BMC Neurol 14:50. https://doi.org/10.1186/1471-2377-14-50

    Article  PubMed  PubMed Central  Google Scholar 

  16. Hagmann P, Jonasson L, Maeder P, Thiran JP, Wedeen VJ, Meuli R (2006) Understanding diffusion MR imaging techniques: from scalar diffusion-weighted imaging to diffusion tensor imaging and beyond. Radiographics 26(Suppl 1):S205–S223. https://doi.org/10.1148/rg.26si065510

    Article  PubMed  Google Scholar 

  17. Mullins ME, Schaefer PW, Sorensen AG, Halpern EF, Ay H, He J, Koroshetz WJ, Gonzalez RG (2002) CT and conventional and diffusion-weighted MR imaging in acute stroke: study in 691 patients at presentation to the emergency department. Radiology 224(2):353–360. https://doi.org/10.1148/radiol.2242010873

    Article  PubMed  Google Scholar 

  18. Srinivasan A, Goyal M, Al Azri F, Lum C (2006) State-of-the-art imaging of acute stroke. Radiographics 26(Suppl 1):S75–S95. https://doi.org/10.1148/rg.26si065501

    Article  PubMed  Google Scholar 

  19. Le Bihan D, Mangin JF, Poupon C, Clark CA, Pappata S, Molko N, Chabriat H (2001) Diffusion tensor imaging: concepts and applications. J Magn Reson Imaging 13(4):534–546

    Article  Google Scholar 

  20. Mukherjee P, Chung SW, Berman JI, Hess CP, Henry RG (2008) Diffusion tensor MR imaging and fiber tractography: technical considerations. AJNR Am J Neuroradiol 29(5):843–852. https://doi.org/10.3174/ajnr.A1052

    Article  CAS  PubMed  Google Scholar 

  21. Okada T, Mikuni N, Miki Y, Kikuta K, Urayama S, Hanakawa T, Fushimi Y, Yamamoto A, Kanagaki M, Fukuyama H, Hashimoto N, Togashi K (2006) Corticospinal tract localization: integration of diffusion-tensor tractography at 3-T MR imaging with intraoperative white matter stimulation mapping--preliminary results. Radiology 240(3):849–857. https://doi.org/10.1148/radiol.2403050916

    Article  PubMed  Google Scholar 

  22. Vlieger EJ, Majoie CB, Leenstra S, Den Heeten GJ (2004) Functional magnetic resonance imaging for neurosurgical planning in neurooncology. Eur Radiol 14(7):1143–1153. https://doi.org/10.1007/s00330-004-2328-y

    Article  PubMed  Google Scholar 

  23. Tan H, Liu T, Wu Y, Thacker J, Shenkar R, Mikati AG, Shi C, Dykstra C, Wang Y, Prasad PV, Edelman RR, Awad IA (2014) Evaluation of iron content in human cerebral cavernous malformation using quantitative susceptibility mapping. Investig Radiol 49(7):498–504. https://doi.org/10.1097/RLI.0000000000000043

    Article  CAS  Google Scholar 

  24. Zeineddine HA, Girard R, Cao Y, Hobson N, Fam MD, Stadnik A, Tan H, Shen J, Chaudagar K, Shenkar R, Thompson RE, McBee N, Hanley D, Carroll T, Christoforidis GA, Awad IA (2018) Quantitative susceptibility mapping as a monitoring biomarker in cerebral cavernous malformations with recent hemorrhage. J Magn Reson Imaging 47(4):1133–1138. https://doi.org/10.1002/jmri.25831

    Article  PubMed  Google Scholar 

  25. Girard R, Fam MD, Zeineddine HA, Tan H, Mikati AG, Shi C, Jesselson M, Shenkar R, Wu M, Cao Y, Hobson N, Larsson HBW, Christoforidis GA, Awad IA (2017) Vascular permeability and iron deposition biomarkers in longitudinal follow-up of cerebral cavernous malformations. J Neurosurg 127(1):102–110. https://doi.org/10.3171/2016.5.JNS16687

    Article  PubMed  Google Scholar 

  26. Mikati AG, Tan H, Shenkar R, Li L, Zhang L, Guo X, Larsson HB, Shi C, Liu T, Wang Y, Shah A, Edelman RR, Christoforidis G, Awad I (2014) Dynamic permeability and quantitative susceptibility: related imaging biomarkers in cerebral cavernous malformations. Stroke 45(2):598–601. https://doi.org/10.1161/STROKEAHA.113.003548

    Article  CAS  PubMed  Google Scholar 

  27. Hart BL, Taheri S, Rosenberg GA, Morrison LA (2013) Dynamic contrast-enhanced MRI evaluation of cerebral cavernous malformations. Transl Stroke Res 4(5):500–506. https://doi.org/10.1007/s12975-013-0285-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mikati AG, Khanna O, Zhang L, Girard R, Shenkar R, Guo X, Shah A, Larsson HB, Tan H, Li L, Wishnoff MS, Shi C, Christoforidis GA, Awad IA (2015) Vascular permeability in cerebral cavernous malformations. J Cereb Blood Flow Metab 35(10):1632–1639. https://doi.org/10.1038/jcbfm.2015.98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Polster SP, Stadnik A, Akers AL, Cao Y, Christoforidis GA, Fam MD, Flemming KD, Girard R, Hobson N, Koenig JI, Koskimaki J, Lane K, Liao JK, Lee C, Lyne SB, McBee N, Morrison L, Piedad K, Shenkar R, Sorrentino M, Thompson RE, Whitehead KJ, Zeineddine HA, Hanley DF, Awad IA (2018) Atorvastatin treatment of cavernous Angiomas with symptomatic hemorrhage exploratory proof of concept (AT CASH EPOC) trial. Neurosurgery 85:843. https://doi.org/10.1093/neuros/nyy539

    Article  Google Scholar 

  30. Polster SP, Cao Y, Carroll T, Flemming K, Girard R, Hanley D, Hobson N, Kim H, Koenig J, Koskimaki J, Lane K, Majersik JJ, McBee N, Morrison L, Shenkar R, Stadnik A, Thompson RE, Zabramski J, Zeineddine HA, Awad IA (2019) Trial readiness in cavernous angiomas with symptomatic hemorrhage (CASH). Neurosurgery 84(4):954–964. https://doi.org/10.1093/neuros/nyy108

    Article  PubMed  Google Scholar 

  31. Zou X, Hart BL, Mabray M, Bartlett MR, Bian W, Nelson J, Morrison LA, McCulloch CE, Hess CP, Lupo JM, Kim H (2017) Automated algorithm for counting microbleeds in patients with familial cerebral cavernous malformations. Neuroradiology 59(7):685–690. https://doi.org/10.1007/s00234-017-1845-8

    Article  PubMed  PubMed Central  Google Scholar 

  32. Toldo I, Drigo P, Mammi I, Marini V, Carollo C (2009) Vertebral and spinal cavernous angiomas associated with familial cerebral cavernous malformation. Surg Neurol 71(2):167–171. https://doi.org/10.1016/j.surneu.2007.07.067

    Article  PubMed  Google Scholar 

  33. Badhiwala JH, Farrokhyar F, Alhazzani W, Yarascavitch B, Aref M, Algird A, Murty N, Kachur E, Cenic A, Reddy K, Almenawer SA (2014) Surgical outcomes and natural history of intramedullary spinal cord cavernous malformations: a single-center series and meta-analysis of individual patient data: clinic article. J Neurosurg Spine 21(4):662–676. https://doi.org/10.3171/2014.6.SPINE13949

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Mabray .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Mabray, M., Hart, B. (2020). Clinical Imaging of Cerebral Cavernous Malformations: Computed Tomography and Magnetic Resonance Imaging. In: Trabalzini, L., Finetti, F., Retta, S. (eds) Cerebral Cavernous Malformations (CCM) . Methods in Molecular Biology, vol 2152. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0640-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0640-7_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0639-1

  • Online ISBN: 978-1-0716-0640-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics