Skip to main content

Analysis of Sterols by Gas Chromatography–Mass Spectrometry

  • Protocol
  • First Online:
  • 679 Accesses

Part of the book series: Springer Protocols Handbooks ((SPH))

Abstract

Sterols are a major component of cell membranes among all biological systems including bacteria, plant, fungi, and mammals. While the essential carbon skeleton found in all sterol-like structures is the sterane (cyclopentanoperhydrophenanthrenes) ring, there are minor variations which make each structure unique. These include hydroxylations, methylations, ketone groups, double bonds, etc. These structures play specific roles in the biological membranes. Earlier, sterols could only be detected using traditional methods like thin-layer chromatography or UV–vis spectrophotometry. However, these techniques are unable to accurately differentiate between these closely related sterol structures. Therefore, it becomes essential to develop new and sensitive methods for accurate quantification of sterols. In the last few decades, research on gas chromatography–mass spectrometry (GCMS)-based sterol structure determination and quantification has been on the rise. In this chapter, we have discussed some basic background of GCMS and its application in the absolute quantification of sterols using some examples.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

Abbreviations

BHT:

Butylated hydroxytoluene

BSTFA-TMCS:

(N,O-Bis(trimethylsilyl)trifluoroacetamide-trimethylchlorosilane)

CI:

Chemical ionization

EI:

Electron impact

EIC:

Extracted ion chromatogram

GC:

Gas chromatography

i.s.:

Internal standard

m/z :

Mass-to-charge ratio

MS:

Mass spectrometry

RT:

Retention time

TIC:

Total ion chromatogram

TLC:

Thin-layer chromatography

TMS:

Trimethylsilyl

References

  1. Sánchez-Guijo A, Hartmann MF, Wudy SA (2013) Introduction to gas chromatography-mass spectrometry. Methods Mol Biol 1065:27–44

    Article  PubMed  Google Scholar 

  2. Pacot GMM, Lee LM, Chin S-T, Marriott PJ (2016) Introducing students to gas chromatography–mass spectrometry analysis and determination of kerosene components in a complex mixture. J Chem Educ 93(4):742–746

    Article  CAS  Google Scholar 

  3. Medeiros PM, Simoneit BR (2007) Gas chromatography coupled to mass spectrometry for analyses of organic compounds and biomarkers as tracers for geological, environmental, and forensic research. J Sep Sci 30(10):1516–1536

    Article  CAS  PubMed  Google Scholar 

  4. Snozek CLH, Langman LJ, Cotten SW (2019) An introduction to drug testing: the expanding role of mass spectrometry. Methods Mol Biol 1872:1–10

    Article  CAS  PubMed  Google Scholar 

  5. Wang Y, Shen L, Gong Z, Pan J, Zheng X, Xue J (2019) Analytical methods to analyze pesticides and herbicides. Water Environ Res 91(10):1009–1024

    Article  CAS  PubMed  Google Scholar 

  6. Headley JV, Peru KM, Barrow MP (2016) Advances in mass spectrometric characterization of naphthenic acids fraction compounds in oil sands environmental samples and crude oil—a review. Mass Spectrom Rev 35(2):311–328

    Article  CAS  PubMed  Google Scholar 

  7. Adhikari PL, Wong RL, Overton EB (2017) Application of enhanced gas chromatography/triple quadrupole mass spectrometry for monitoring petroleum weathering and forensic source fingerprinting in samples impacted by the Deepwater Horizon oil spill. Chemosphere 184:939–950

    Article  CAS  PubMed  Google Scholar 

  8. Wudy SA, Schuler G, Sánchez-Guijo A, Hartmann MF (2018) The art of measuring steroids: principles and practice of current hormonal steroid analysis. J Steroid Biochem Mol Biol 179:88–103

    Article  CAS  PubMed  Google Scholar 

  9. Liu Z, Weng R, Feng Y, Li Z, Wang L, Su X, Yu C (2016) Fatty acid profiling of blood cell membranes by gas chromatography with mass spectrometry. J Sep Sci 39(20):3964–3972

    Article  CAS  PubMed  Google Scholar 

  10. Goad J, Akihisa T (1997) Analysis of sterols, 1st edn. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1447-6

    Book  Google Scholar 

  11. Dufourc EJ (2008) Sterols and membrane dynamics. J Chem Biol 1(1–4):63–77

    Article  PubMed  PubMed Central  Google Scholar 

  12. Piironen V, Lindsay DG, Miettinen TA, Toivo J, Lampi AM (2000) Plant sterols: biosynthesis, biological function and their importance to human nutrition. J Sci Food Agric 80(7):939–966

    Article  CAS  Google Scholar 

  13. Pizzoferrato L, Nicoli S, Lintas C (1993) GC-MS characterization and quantification of sterols and cholesterol oxidation products. Chromatographia 35(5–6):269–274

    Article  CAS  Google Scholar 

  14. Jenner AM, Brown SH (2017) Sterol analysis by quantitative mass spectrometry. Methods Mol Biol 1583:221–239

    Article  CAS  PubMed  Google Scholar 

  15. Folch J, Lees M, Sloane Stanley GH (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226(1):497–509

    CAS  PubMed  Google Scholar 

  16. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37(8):911–917

    Article  CAS  PubMed  Google Scholar 

  17. Ejsing CS, Sampaio JL, Surendranath V, Duchoslav E, Ekroos K, Klemm RW, Simons K, Shevchenko A (2009) Global analysis of the yeast lipidome by quantitative shotgun mass spectrometry. Proc Natl Acad Sci USA 106(7):2136–2141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mandala SM, Thornton RA, Frommer BR, Curotto JE, Rozdilsky W, Kurtz MB, Giacobbe RA, Bills GF, Cabello MA, Martín I, Palaez F, Harris GH (1995) The discovery of australifungin, a novel inhibitor of sphinganine N-acyltransferase from Sporormiella australis. Producing organism, fermentation, isolation, and biological activity. J Antibiot (Tokyo) 48(5):349–356

    Article  CAS  Google Scholar 

  19. Singh A, MacKenzie A, Girnun G, Del Poeta M (2017) Analysis of sphingolipids, sterols, and phospholipids in human pathogenic Cryptococcus strains. J Lipid Res 58(10):2017–2036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Adams BG, Parks LW (1968) Isolation from yeast of a metabolically active water-soluble form of ergosterol. J Lipid Res 9(1):8–11

    CAS  PubMed  Google Scholar 

  21. Nes WD, Zhou W, Ganapathy K, Liu J, Vatsyayan R, Chamala S, Hernandez K, Miranda M (2009) Sterol 24-C-methyltransferase: an enzymatic target for the disruption of ergosterol biosynthesis and homeostasis in Cryptococcus neoformans. Arch Biochem Biophys 481(2):210–218

    Article  CAS  PubMed  Google Scholar 

  22. Kim JH, Singh A, Del Poeta M, Brown DA, London E (2017) The effect of sterol structure upon clathrin-mediated and clathrin-independent endocytosis. J Cell Sci 130(16):2682–2695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gutiérrez A, del Río JC (2001) Gas chromatography/mass spectrometry demonstration of steryl glycosides in eucalypt wood, Kraft pulp and process liquids. Rapid Commun Mass Spectrom 15(24):2515–2520

    Article  PubMed  Google Scholar 

  24. Singh A, Mahto KK, Prasad R (2013) Lipidomics and in vitro azole resistance in Candida albicans. OMICS 17(2):84–93. https://doi.org/10.1089/omi.2012.0075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chang YC, Khanal Lamichhane A, Garraffo HM, Walter PJ, Leerkes M, Kwon-Chung KJ (2014) Molecular mechanisms of hypoxic responses via unique roles of Ras1, Cdc24 and Ptp3 in a human fungal pathogen Cryptococcus neoformans. PLoS Genet 10(4):e1004292. https://doi.org/10.1371/journal.pgen.1004292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Shiva S, Enninful R, Roth MR, Tamura P, Jagadish K, Welti R (2018) An efficient modified method for plant leaf lipid extraction results in improved recovery of phosphatidic acid. Plant Methods 14:14

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank grants to AS from ICMR No. 52/08/2019-BMS and University of Lucknow, Lucknow. NB thanks financial support from ICMR No. 56/2/Hae/BMS and his institution.

Financial and Competing Interest Disclosure

Author has no financial and competing interests with the subject matter or materials discussed in the manuscript.

Contribution to the Manuscript

AS, SAU, KA, and NB wrote the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashutosh Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Singh, A., Usmani, S.A., Arya, K., Bhardwaj, N. (2020). Analysis of Sterols by Gas Chromatography–Mass Spectrometry. In: Prasad, R., Singh, A. (eds) Analysis of Membrane Lipids. Springer Protocols Handbooks. Springer, New York, NY. https://doi.org/10.1007/978-1-0716-0631-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0631-5_6

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-0716-0630-8

  • Online ISBN: 978-1-0716-0631-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics