Skip to main content

Insights into Yeast Phospholipid Tra(ffi)cking

  • Protocol
  • First Online:
Analysis of Membrane Lipids

Part of the book series: Springer Protocols Handbooks ((SPH))

Abstract

Lipids are the best known form of energy storage. Apart from being energy reserves and signaling molecules, they also form an integral part of the cell membranes and provide structure and fluidity to the membranes. A group of polar lipids, namely, the phospholipids (PLs), are membrane constituents, defining the structure, shape, and function of the cells. They decide the cell permeability due to their hydrophobicity. PLs also play an under-rated role in many human diseases, due to which more importance needs to be given toward studies focusing on their synthesis, function, and metabolism. The budding yeast, Saccharomyces cerevisiae, is a model organism for the study of PLs as it is a simple system to characterize lipid metabolic changes under various physiological conditions. Yeasts have been used to study the mechanisms related to lipid metabolism, lipid trafficking, and localization in different subcellular organelles. It also shows the presence of various PLs, which makes it a versatile tool for research. With the recent developments in detection and quantification of PLs, and techniques using novel reagents, tags, and specific stains to localize a particular lipid in different subcellular compartments, yeast makes itself a remarkable model for lipid research. In this chapter, we discuss the various PLs present in the budding yeast, their traffic within the yeast cell, and methods of tracking them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fahy E, Subramaniam S, Brown HA, Glass CK, Merrill AH Jr, Murphy RC, Raetz CR, Russell DW, Seyama Y, Shaw W, Shimizu T, Spener F, van Meer G, VanNieuwenhze MS, White SH, Witztum JL, Dennis EA (2005) A comprehensive classification system for lipids. J Lipid Res 46:839–861

    CAS  PubMed  Google Scholar 

  2. Bittman R (2013) Glycerolipids: chemistry. In: Roberts GCK (ed) Encyclopedia of biophysics. Springer, Berlin

    Google Scholar 

  3. Munnik T (2001) Phosphatidic acid: an emerging plant lipid second messenger. Trends Plant Sci 6(5):227–233

    CAS  PubMed  Google Scholar 

  4. Taylor CL (2003) Phosphatidylserine and cognitive dysfunction and dementia (qualified health claim: final decision letter). Center for Food Safety and Applied Nutrition, USFDA. Retrieved 23 Aug 2014

    Google Scholar 

  5. Lands WE (1965) Lipid metabolism. Annu Rev Biochem 34:313–346

    CAS  PubMed  Google Scholar 

  6. Wang B, Tontonoz P (2019) Phospholipid remodelling in physiology and disease. Annu Rev Physiol 81(1):165–188

    PubMed  Google Scholar 

  7. Schneiter R, Kohlwein SD (1997) Organelle structure, function, and inheritance in yeast: a role for fatty acid synthesis? Cell 88:431–434

    CAS  PubMed  Google Scholar 

  8. Raychaudhuri S, Young BP, Espenshade PJ, Loewen C Jr (2012) Regulation of lipid metabolism: a tale of two yeasts. Curr Opin Cell Biol Aug 24(4):502–508

    CAS  Google Scholar 

  9. Klug L, Daum G (2014) Yeast lipid metabolism at a glance. FEMS Yeast Res 14:369–388

    CAS  PubMed  Google Scholar 

  10. Singh P (2016) Budding yeast: an ideal backdrop for in vivo lipid biochemistry. Front Cell Dev Biol 4:156. https://doi.org/10.3389/fcell.2016.00156

    Article  PubMed  Google Scholar 

  11. Claypool SM, Koehler CM (2012) The complexity of cardiolipin in health and disease. Trends Biochem Sci 37:32–41

    CAS  PubMed  Google Scholar 

  12. Schuiki I, Daum G (2009) Phosphatidylserine decarboxylases, key enzymes of lipid metabolism. IUBMB Life 61:151–162

    CAS  PubMed  Google Scholar 

  13. Lands WE (1960) Metabolism of glycerolipids. 2. The enzymatic acylation of lysolecithin. J Biol Chem 235:2233–2237

    CAS  PubMed  Google Scholar 

  14. Wagner S, Paltauf F (1994) Generation of glycerophospholipid molecular species in the yeast Saccharomyces cerevisiae. Fatty acid pattern of phospholipid classes and selective acyl turnover at sn-1 and sn-2 positions. Yeast 10(11):1429–1437

    CAS  PubMed  Google Scholar 

  15. Fido M, Wagner S, Mayr H, Kohlwein SD, Paltauf F (1996) NATO ASI series. In: Op den Kamp JAF (ed) Molecular dynamics of biomembranes, vol H 96. Springer, Heidelberg, pp 315–326

    Google Scholar 

  16. Daum G (1985) Lipids of mitochondria. Biochim Biophys Acta 822:1–42

    CAS  PubMed  Google Scholar 

  17. Yeagle PL (2016) Lipid protein interactions in membranes. In: Yeagle PL (ed) The membrane of cells, 3rd edn. Academic, New York

    Google Scholar 

  18. Chang S-C, Heacock PN, Clancey CJ, Dowhan W (1998a) The PEL1 gene (renamed PGS1) encodes the phosphatidylglycerophosphate synthase of Saccharomyces cerevisiae. J Biol Chem 273:9829–9836

    CAS  PubMed  Google Scholar 

  19. Osman C, Haag M, Wieland FT, Brugger B, Langer T (2010) A mitochondrial phosphatase required for cardiolipin biosynthesis: the PGP phosphatase Gep4. EMBO J 29:1976–1987

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Chang S-C, Heacock PN, Mileykovskaya E, Voelker DR, Dowhan W (1998b) Isolation and characterization of the gene (CLS1) encoding cardiolipin synthase in Saccharomyces cerevisiae. J Biol Chem 273:14933–14941

    CAS  PubMed  Google Scholar 

  21. Tuller G, Hrastnik C, Achleitner G, Schiefthaler U, Klein F, Daum G (1998) YDL142c encodes cardiolipin synthase (Cls1p) and is non-essential for aerobic growth of Saccharomyces cerevisiae. FEBS Lett 421:15–18

    CAS  PubMed  Google Scholar 

  22. Pangborn MC (1947) The composition of cardiolipin. J Biol Chem 168:351–361

    CAS  PubMed  Google Scholar 

  23. Lecocq J, Ballou CE (1964) On the structure of cardiolipin. Biochemistry 3:976–980

    CAS  PubMed  Google Scholar 

  24. Dimmer KS, Scorrano L (2006) (De)constructing mitochondria: what for? Physiology (Bethesda, Md) 21:233–241

    CAS  Google Scholar 

  25. Joshi AS, Thompson MN, Fei N, Huttemann M, Greenberg ML (2012) Cardiolipin and mitochondrial phosphatidylethanolamine have overlapping functions in mitochondrial fusion in Saccharomyces cerevisiae. J Biol Chem 287:17589–17597

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Beyer K, Klingenberg M (1985) ADP/ATP carrier protein from beef heart mitochondria has high amounts of tightly bound cardiolipin, as revealed by 31P nuclear magnetic resonance. Biochemistry 24(15):3821–3826

    CAS  PubMed  Google Scholar 

  27. Lange C, Nett JH, Trumpower BL, Hunte C (2001) Specific roles of protein-phospholipid interactions in the yeast cytochrome bc1 complex structure. EMBO J 20:6591–6600

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Jiang F, Ryan MT, Schlame M, Zhao M, Gu Z, Klingenberg M, Pfanner N, Greenberg ML (2000) Absence of cardiolipin in the crd1 null mutant results in decreased mitochondrial membrane potential and reduced mitochondrial function. J Biol Chem 275:22387–22394

    CAS  PubMed  Google Scholar 

  29. Gohil VM, Thompson MN, Greenberg ML (2005) Synthetic lethal interaction of the mitochondrial phosphatidylethanolamine and cardiolipin biosynthetic pathways in Saccharomyces cerevisiae. J Biol Chem 280:35410–35416

    CAS  PubMed  Google Scholar 

  30. Schlame M, Rustow B (1990) Lysocardiolipin formation and reacylation in isolated rat liver mitochondria. Biochem J 272:589–595

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Xu Y, Kelley RI, Blanck TJ, Schlame M (2003) Remodeling of cardiolipin by phospholipid transacylation. J Biol Chem 278:51380–51385

    CAS  PubMed  Google Scholar 

  32. Schlame M, Kelley RI, Feigenbaum A, Towbin JA, Heerdt PM, Schieble T, Wanders RJ, DiMauro S, Blanck TJ (2003) Phospholipid abnormalities in children with Barth syndrome. J Am Coll Cardiol 42:1994–1999

    CAS  PubMed  Google Scholar 

  33. Vreken P, Valianpour F, Nijtmans LG, Grivell LA, Plecko B, Wanders RJ, Barth PG (2000) Defective remodeling of cardiolipin and phosphatidylglycerol in Barth syndrome. BiochemBiophys Res Commun 279:378–382. https://doi.org/10.1006/bbrc.2000.3952

    Article  CAS  Google Scholar 

  34. Beranek A, Rechberger G, Knauer H, Wolinski H, Kohlwein SD, Leber R (2009) Identification of a cardiolipin-specific phospholipase encoded by the gene CLD1 (YGR110W) in yeast. J Biol Chem 284(17):11572–11578

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Rijken PJ, Houtkooper RH, Akbari H, Brouwers JF, Koorengevel MC, de Kruijff B, Frentzen M, Vaz FM, de Kroon AI (2009) Cardiolipin molecular species with shorter acyl chains accumulate in Saccharomyces cerevisiae mutants lacking the acyl coenzyme A-binding protein Acb1p: new insights into acyl chain remodeling of cardiolipin. J Biol Chem 284:27609–27619

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Ye C, Lou W, Li Y, Chatzispyrou IA, Huttemann M, Lee I, Houtkooper RH, Vaz FM, Chen S, Greenberg ML (2014) Deletion of the cardiolipin-specific phospholipase Cld1 rescues growth and life span defects in the tafazzin mutant: implications for Barth syndrome. J Biol Chem 289:3114–3125

    CAS  PubMed  Google Scholar 

  37. Pokorna L, Cermakova P, Horvath A, Baile MG, Claypool SM, Griac P, Malinsky J, Balazova M (2015) Specific degradation of phosphatidylglycerol is necessary for proper mitochondrial morphology and function. Biochim Biophys Acta 1857:34–45

    PubMed  PubMed Central  Google Scholar 

  38. Nie J, Hao X, Chen D, Han X, Chang Z, Shi Y (2010) A novel function of the human CLS1 in phosphatidylglycerol synthesis and remodeling. Biochim Biophys Acta 1801:438–445

    CAS  PubMed  Google Scholar 

  39. Lee SJ, Zhang J, Choi AM, Kim HP (2013) Mitochondrial dysfunction induces formation of lipid droplets as a generalized response to stress. Oxidative Med Cell Longev 2013:327167

    Google Scholar 

  40. Zweytick D, Athenstaedt K, Daum G (2000) Intracellular lipid particles of eukaryotic cells. Biochim Biophys Acta 1469:101–120

    CAS  PubMed  Google Scholar 

  41. Farese RV Jr, Walther TC (2009) Lipid droplets finally get a little R-E-S-P-E-C-T. Cell 139:855–860

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Murphy DJ (2001) The biogenesis and functions of lipid bodies in animals, plants and microorganisms. Prog Lipid Res 40:325–438

    CAS  PubMed  Google Scholar 

  43. Tauchi-Sato K, Ozeki S, Houjou T, Taguchi R, Fujimoto T (2002) The surface of lipid droplets is a phospholipid monolayer with a unique fatty acid composition. J Biol Chem 277:44507–44512

    CAS  PubMed  Google Scholar 

  44. Horvath SE, Wagner A, Steyrer E, Daum G (2011) Metabolic link between phosphatidylethanolamine and triacylglycerol metabolism in the yeast Saccharomyces cerevisiae. Biochim Biophys Acta 1811:1030–1037

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Novikoff AB, Novikoff PM, Rosen OM, Rubin CS (1980) Organelle relationships in cultured 3T3-L1 preadipocytes. J Cell Biol 87:180–196

    CAS  PubMed  Google Scholar 

  46. Pu J, Ha CW, Zhang S, Jung JP, Huh WK, Liu P (2011) Interactomic study on interaction between lipid droplets and mitochondria. Protein Cell 2:487–496

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Shaw CS, Jones DA, Wagenmakers AJ (2008) Network distribution of mitochondria and lipid droplets in human muscle fibres. Histochem Cell Biol 129:65–72

    CAS  PubMed  Google Scholar 

  48. Petit JM, Maftah A, Ratinaud MH, Julien R (1992) 10-N nonyl acridine orange interacts with cardiolipin and allows the quantification of this phospholipid in isolated mitochondria. Eur J Biochem 209:267–273

    CAS  PubMed  Google Scholar 

  49. Gallet PF, Maftah A, Petit JM, Denis-Gay M, Julien R (1995) Direct cardiolipin assay in yeast using the red fluorescence emission of 10-N-nonyl acridine orange. Eur J Biochem 228:113–119

    CAS  PubMed  Google Scholar 

  50. Jacobson J, Duchen MR, Heales SJ (2002) Intracellular distribution of the fluorescent dye nonyl acridine orange responds to the mitochondrial membrane potential: implications for assays of cardiolipin and mitochondrial mass. J Neurochem 82:224–233

    CAS  PubMed  Google Scholar 

  51. Mileykovskaya E, Dowhan W, Birke RL, Zheng D, Lutterodt L, Haines TH (2001) Cardiolipin binds nonyl acridine orange by aggregating the dye at exposed hydrophobic domains on bilayer surfaces. FEBS Lett 507:187–190

    CAS  PubMed  Google Scholar 

  52. Morita SY, Terada T (2015) Enzymatic measurement of phosphatidylglycerol and cardiolipin in cultured cells and mitochondria. Sci Rep 5:11737

    PubMed  PubMed Central  Google Scholar 

  53. Boumann HA, Gubbens J, Koorengevel MC, Oh CS, Martin CE, Heck AJR, Patton-Vogt J, Henry SA, de Kruijff B, de Kroon AIPM (2006) Depletion of phosphatidylcholine in yeast induces shortening and increased saturation of the lipid acyl chains: evidence for regulation of intrinsic membrane curvature in a eukaryote. Mol Biol Cell 17(2):1006–1017

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Flis VV, Fankl A, Ramprecht C, Zellnig G, Leitner E, Hermetter A, Daum G (2015) Phosphatidylcholine supply to peroxisomes of the yeast Saccharomyces cerevisiae. PLoS One 10(8):e0135084

    PubMed  PubMed Central  Google Scholar 

  55. Athenstaedt K, Daum G (2005) Tgl4p and Tgl5p, two triacylglycerol lipases of the yeast Saccharomyces cerevisiae are localized to lipid particles. J Biol Chem 280(45):37301–37309

    CAS  PubMed  Google Scholar 

  56. De Kroon AI (2007) Metabolism of phosphatidylcholine and its implications for lipid acyl chain composition in Saccharomyces cerevisiae. Biochim Biophys Acta 771(3):343–352

    Google Scholar 

  57. Rockenfeller P, Koska M, Pietrocola F, Minois N, Knittelfelder O, Sica V, Franz J, Carmona-Gutierrez D, Kroemer G, Madeo F (2015) Phosphatidylethanolamine positively regulates autophagy and longevity. Cell Death Differ 22:499–508

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Broekhuyse RM (1968) Phospholipids in tissues of the eye. I. Isolation, characterization and quantitative analysis by two-dimensional thin-layer chromatography of diacyl and vinyl-ether phospholipids. Biochim Biophys Acta 152(2):307–315

    CAS  PubMed  Google Scholar 

  59. Leventis PA, Grinstein S (2010) The distribution and function of phosphatidylserine in cellular membranes. Annu Rev Biophys 39:407–427

    CAS  PubMed  Google Scholar 

  60. Casilly CD, Reynolds TB (2018) PS, it’s complicated: the roles of phosphatidylserine and phosphatidylethanolamine in the pathogenesis of Candida albicans and other microbial pathogens. J Fungi (Basel) 4(1):E28. https://doi.org/10.3390/jof4010028

    Article  CAS  Google Scholar 

  61. Kay JG, Grinstein S (2011) Sensing phosphatidylserine in cellular membranes. Sensors (Basel) 11(2):1744–1755

    CAS  Google Scholar 

  62. Nikawa J, Yamashita S (1997) Phosphatidylinositol synthase from yeast. Biochim Biophys Acta 1348(1–2):173–178

    CAS  PubMed  Google Scholar 

  63. De Camilli P, Emr SD, McPherson PS, Novick P (1996) Phosphoinositides as regulators in membrane traffic. Science 271(5255):1533–1539

    PubMed  Google Scholar 

  64. Strahl T, Hama H, DeWald DB, Thomer J (2005) Yeast phosphatidylinositol 4-kinase, Pik1, has essential roles at the Golgi and in the nucleus. J Cell Biol 171(6):967–979

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Wera S, Bergsma JCT, Thevelein JM (2001) Phosphoinositides in yeast: genetically tractable signalling. FEMS Yeast Res 1(1):9–13

    CAS  PubMed  Google Scholar 

  66. Idevall-Hagren O, De Camilli P (2015) Detection and manipulation of phosphoinositides. Biochim Biophys Acta 1851(6):736–745

    CAS  PubMed  Google Scholar 

  67. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    CAS  Google Scholar 

  68. Letters R (1966) Phospholipids of yeast II. Extraction, isolation and characterisation of yeast phospholipids. Biochim Biophys Acta 116(3):489–499

    CAS  PubMed  Google Scholar 

  69. Faergeman NJ, Feddersen S, Christiansen JK, Larsen MK, Schneiter R, Ungermann C, Mutenda K, Roepstorff P, Knudsen J (2004) Acyl-CoA-binding protein, Acb1p, is required for normal vacuole function and ceramide synthesis in Saccharomyces cerevisiae. Biochem J 380(Pt 3):907–918

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Forrester JS, Milne SB, Ivanova PT, Brown HA (2004) Computational lipidomics: a multiplexed analysis of dynamic changes in membrane lipid composition during signal transduction. Mol Pharmacol 65(4):813–821

    CAS  PubMed  Google Scholar 

  71. Wenk MR (2005) The emerging field of lipidomics. Nat Rev Drug Discov 4(7):594–610

    CAS  PubMed  Google Scholar 

  72. Guan XL, Wenk MR (2006) Mass spectrometry-based profiling of phospholipids and sphingolipids in extracts from Saccharomyces cerevisiae. Yeast 23(6):465–477

    CAS  Google Scholar 

  73. Anaokar S, Kodali R, Jonik B, Renne MF, Brouwers JFHM, Lager I, deKroon AIPM, Patton-Vogt I (2019) The glycerophosphocholine acyltransferase Gpc1 is part of a phosphatidylcholine (PC)-remodeling pathway that alters PC species in yeast. J Biol Chem 294:1189–1201

    CAS  PubMed  Google Scholar 

  74. Koeberle A, Shindou H, Koeberle SC, Laufer SA, Shimizu T, Werz O (2013) Arachidonoyl-phosphatidylcholine oscillates during the cell cycle and counteracts proliferation by suppressing Akt membrane binding. Proc Natl Acad Sci USA 110(7):2546–2551

    CAS  PubMed  Google Scholar 

  75. Koeberle A, Pergola C, Shindou H, Koeberle SC, Shimizu T, Laufer SA, Werz O (2015) Role of p38 mitogen-activated protein kinase in linking stearoyl-CoA desaturase-1 activity with endoplasmic reticulum homeostasis. FASEB J 29(6):2439–2449

    CAS  PubMed  Google Scholar 

  76. Spickett CM, Pitt AR (2015) Oxidative lipidomics coming of age: advances in analysis of oxidized phospholipids in physiology and pathology. Antioxid Redox Signal 22(18):1646–1666

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Aoyagi R, Ikeda K, Isobe Y, Arita M (2017) Comprehensive analyses of oxidized phospholipids using a measured MS/MS spectra library. J Lipid Res 58(11):2229–2237

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malathi Srinivasan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Srinivasan, M., Rajasekharan, R. (2020). Insights into Yeast Phospholipid Tra(ffi)cking. In: Prasad, R., Singh, A. (eds) Analysis of Membrane Lipids. Springer Protocols Handbooks. Springer, New York, NY. https://doi.org/10.1007/978-1-0716-0631-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0631-5_4

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-0716-0630-8

  • Online ISBN: 978-1-0716-0631-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics