Skip to main content

Visualizing Genome Reorganization Using 3D DNA FISH

  • Protocol
  • First Online:
In Situ Hybridization Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2148))

Abstract

Understanding how the genome is organized within the cell nucleus is increasingly recognized to be important to understand gene regulation. In 3D DNA fluorescence in situ hybridization (3D DNA FISH) labeled probes complementary to specific loci of interest are hybridized to the genome. The samples are then imaged using fluorescence microscopy, collecting z-stacks through the nuclei, and the relative positions of the hybridized probes are analyzed in the reconstructed 3D images. In this way 3D DNA FISH provides a powerful tool to interrogate how the organization of specific genomic loci changes in response to stimuli. This chapter describes protocols which have allowed us to produce consistent data in cultured cells and paraffin-embedded tissue sections.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Craig JM, Bickmore WA (1993) Chromosome bands – flavours to savour. BioEssays 15:349–354. https://doi.org/10.1002/bies.950150510

    Article  CAS  PubMed  Google Scholar 

  2. Pinkel D, Landegent J, Collins C et al (1988) Fluorescence in situ hybridization with human chromosome-specific libraries: detection of trisomy 21 and translocations of chromosome 4. Proc Natl Acad Sci U S A 85:9138–9142. https://doi.org/10.1073/pnas.85.23.9138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Cremer T, Lichter P, Borden J et al (1988) Detection of chromosome aberrations in metaphase and interphase tumor cells by in situ hybridization using chromosome-specific library probes. Hum Genet 80:235–246. https://doi.org/10.1007/BF01790091

    Article  CAS  PubMed  Google Scholar 

  4. Cross SH, Lee M, Clark VH et al (1997) The chromosomal distribution of CpG Islands in the mouse: evidence for genome scrambling in the rodent lineage. Genomics 40:454–461. https://doi.org/10.1006/geno.1996.4598

    Article  CAS  PubMed  Google Scholar 

  5. Gilbert N, Boyle S, Fiegler H et al (2004) Chromatin architecture of the human genome. Cell 118:555–566. https://doi.org/10.1016/j.cell.2004.08.011

    Article  CAS  PubMed  Google Scholar 

  6. Fraser P, Bickmore W (2007) Nuclear organization of the genome and the potential for gene regulation. Nature 447:413–417. https://doi.org/10.1038/nature05916

    Article  CAS  PubMed  Google Scholar 

  7. Williamson I, Eskeland R, Lettice L et al (2012) Anterior-posterior differences in HoxD chromatin topology in limb development. Development 139:3157–3167. https://doi.org/10.1242/dev.081174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rafique S, Thomas JS, Sproul D et al (2015) Estrogen-induced chromatin decondensation and nuclear re-organization linked to regional epigenetic regulation in breast cancer. Genome Biol 16:145. https://doi.org/10.1186/s13059-015-0719-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jubb AW, Boyle S, Hume DA et al (2017) Glucocorticoid receptor binding induces rapid and prolonged large-scale chromatin decompaction at multiple target loci. Cell Rep 21:3022–3031. https://doi.org/10.1016/j.celrep.2017.11.053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chambeyron S, Bickmore WA (2004) Chromatin decondensation and nuclear reorganization of the HoxB locus upon induction of transcription. Genes Dev 18:1119–1130. https://doi.org/10.1101/gad.292104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Morey C, Da Silva NR, Perry P et al (2007) Nuclear reorganisation and chromatin decondensation are conserved, but distinct, mechanisms linked to Hox gene activation. Development 134:909–919. https://doi.org/10.1242/dev.02779

    Article  CAS  PubMed  Google Scholar 

  12. Beliveau BJ, Boettiger AN, Avendaño MS et al (2015) Single-molecule super-resolution imaging of chromosomes and in situ haplotype visualization using Oligopaint FISH probes. Nat Commun 6:7147. https://doi.org/10.1038/ncomms8147

    Article  CAS  PubMed  Google Scholar 

  13. Bienko M, Crosetto N, Teytelman L et al (2013) A versatile genome-scale PCR-based pipeline for high-definition DNA FISH. Nat Methods 10:122–124. https://doi.org/10.1038/nmeth.2306

    Article  CAS  PubMed  Google Scholar 

  14. Giorgetti L, Galupa R, Nora EP et al (2014) Predictive polymer modeling reveals coupled fluctuations in chromosome conformation and transcription. Cell 157:950–963. https://doi.org/10.1016/j.cell.2014.03.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. International Human Genome Sequencing Consortium (2004) Finishing the euchromatic sequence of the human genome. Nature 431:931–945. https://doi.org/10.1038/nature03001

    Article  CAS  Google Scholar 

  16. Benabdallah NS, Williamson I, Illingworth RS, et al (2017) PARP mediated chromatin unfolding is coupled to long-range enhancer activation. bioRxiv 155325. https://doi.org/10.1101/155325

  17. Williamson I, Lettice LA, Hill RE et al (2016) Shh and ZRS enhancer colocalisation is specific to the zone of polarising activity. Development 143:2994–3001. https://doi.org/10.1242/dev.139188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Boyle S, Rodesch MJ, Halvensleben HA et al (2011) Fluorescence in situ hybridization with high-complexity repeat-free oligonucleotide probes generated by massively parallel synthesis. Chromosom Res 19:901–909. https://doi.org/10.1007/s10577-011-9245-0

    Article  CAS  Google Scholar 

  19. Beliveau BJ, Joyce EF, Apostolopoulos N et al (2012) Versatile design and synthesis platform for visualizing genomes with Oligopaint FISH probes. Proc Natl Acad Sci U S A 109:21301–21306. https://doi.org/10.1073/pnas.1213818110

    Article  PubMed  PubMed Central  Google Scholar 

  20. BACPAC Children’s Hospital Oakland Research Institute. https://bacpacresources.org/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alasdair Jubb .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Jubb, A., Boyle, S. (2020). Visualizing Genome Reorganization Using 3D DNA FISH. In: Nielsen, B.S., Jones, J. (eds) In Situ Hybridization Protocols . Methods in Molecular Biology, vol 2148. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0623-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0623-0_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0622-3

  • Online ISBN: 978-1-0716-0623-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics